【題目】如圖所示是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖像,只要將的圖象上所有的點 ( )
A. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
B. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題
①方程有一個正實根,一個負實根,則;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③命題“若,則”的否命題為“若,則”;
④命題“,使得”的否定是“,都有”;
⑤“”是“”的充分不必要條件.
正確的是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a3 , a5 , a15成等比數(shù)列,若a1=3,Sn為數(shù)列an的前n項和,則anSn的最小值為( )
A.0
B.﹣3
C.﹣20
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在底面是菱形的四棱錐P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,點E為棱PB的中點,點F在棱AD上,平面CEF與PA交于點K,且PA=AB=3,AF=2,則點K到平面PBD的距離為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年6月22日“國際教育信息化大會”在山東青島開幕.為了解哪些人更關注“國際教育信息化大會”,某機構隨機抽取了年齡在15—75歲之間的100人進行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間自和 內(nèi)的人分別稱為“青少年”和“中老年”.
關注 | 不關注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關注“國際教育信息化大會”;
臨界值表:
附:參考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用部分自然數(shù)構造如圖的數(shù)表:用表示第行第個數(shù),使得,每行中的其他各數(shù)分別等于其“肩膀”上的兩個數(shù)之和,設第行中的各數(shù)之和為.
已知,求的值;
令,證明:是等比數(shù)列,并求出的通項公式;
數(shù)列中是否存在不同的三項恰好成等差數(shù)列?若存在,求出的關系,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程為 ( )的離心率為 ,圓的方程為 ,若橢圓與圓 相交于 , 兩點,且線段 恰好為圓 的直徑.
(1)求直線 的方程;
(2)求橢圓 的標準方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com