在平面直角坐標系xoy中,設曲線C1在矩陣A=
10
0
1
2
對應的變換作用下得到曲線C2
x2
4
+y2=1
,求曲線C1的方程.
考點:幾種特殊的矩陣變換
專題:矩陣和變換
分析:先設曲線C1上任意一點P(x,y)在矩陣A對應的變換作用下的像是P'(x',y'),直接計算即可.
解答: 解:設P(x,y)是曲線C1上任意一點,點P(x,y)在矩陣A對應的變換下變?yōu)辄cP'(x',y')
則有
x′
y′
=
10
0
1
2
x
y
,即
x′=x
y′=
1
2
y

又因為點P'(x',y')曲線C2
x2
4
+y2=1
上,
(x′)2
4
+(y′)2=1
,從而
(x)2
4
+(
y
2
)2=1

所以曲線C1的方程是 x2+y2=4.
點評:本題考查矩陣與變換等基礎知識與運算求解能力,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

化簡:
1-2sin20°cos20°
sin20°-cos20°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系xOy中,橢圓Σ:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,焦點為F1、F2,
直線l:x+y-2=0經(jīng)過焦點F2,并與Σ相交于A、B兩點.
(1)求
 
 
的方程;
(2)在
 
 
上是否存在C、D兩點,滿足CD∥AB,F(xiàn)1C=F1D?若存在,求直線CD的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD和ABEF均為矩形,M為AF的中點,BN⊥CE與N.
(1)求證:CF∥平面MBD;
(2)求證:平面EFC⊥平面BDN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C中心在原點O,對稱軸為坐標軸,焦點F1,F(xiàn)2在x軸上,離心率e=
1
2
,且經(jīng)過點A(1,
3
2
).
(Ⅰ)橢圓C的標準方程.
(Ⅱ)已知P、Q是橢圓C上的兩點,若OP⊥OQ,求證:
1
|OP|2
+
1
|OQ|2
為定值.
(Ⅲ)當
1
|OP|2
+
1
|OQ|2
為(Ⅱ)所求定值時,試探究OP⊥OQ是否成立?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

O,N,P在△ABC所在平面內,且|
OA
|=|
OB
|=|
OC
|,
NA
+
NB
+
NC
=
0
,且
PA
PB
=
PB
PC
=
PC
PA
,則點O,N,P依次是△ABC的
 
心、
 
心、
 
心(請按順序填寫).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-x+1,x≤1
2x+a,x>1
且f(f(-1))=7.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)在區(qū)間[0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

盒內有大小相同的10個球,其中3個紅色球,3個白色球,4個黑色球.
(1)現(xiàn)從該盒內任取3個球,規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分,設三個球得分之和ξ,求ξ的分布列與數(shù)學期望;
(2)甲、乙兩人做摸球游戲,設甲從該盒內摸到黑球的概率是
1
2
,已從該盒內摸到黑球的概率是
2
3
,甲,乙兩人各摸球3次,求兩人共摸中2次黑球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:log22x+
2
2
)•log22x+1+
2
)=2.

查看答案和解析>>

同步練習冊答案