【題目】在下列命題中:

方程表示的曲線所圍成區(qū)域面積為;

與兩坐標(biāo)軸距離相等的點(diǎn)的軌跡方程為;

與兩定點(diǎn)距離之和等于的點(diǎn)的軌跡為橢圓;

與兩定點(diǎn)距離之差的絕對(duì)值等于1的點(diǎn)的軌跡為雙曲線.

正確的命題的序號(hào)是________(注:把你認(rèn)為正確的命題序號(hào)都填上)

【答案】②④

【解析】

①畫出圖像,計(jì)算出面積.②顯然為正確的.③根據(jù)到兩定點(diǎn)的距離之和的范圍來判讀命題是否正確.④根據(jù)雙曲線的定義判斷命題是否正確.

對(duì)于①,畫出圖像如下圖所示,面積為,故①正確.

對(duì)于,與兩坐標(biāo)軸距離相等的點(diǎn)的軌跡方程為是正確的.

對(duì)于,由于兩定點(diǎn)距離為,故到兩定點(diǎn)距離之和等于的點(diǎn)是不存在的,故錯(cuò)誤.

對(duì)于,根據(jù)雙曲線的定義可知,是正確的.

綜上所述,正確的命題為①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若存在區(qū)間,同時(shí)滿足下列條件:①上是單調(diào)的;②當(dāng)定義域是時(shí),的值域也是,則稱為該函數(shù)的和諧區(qū)間”.下列函數(shù)存在和諧區(qū)間的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)為( )

(1)已知定點(diǎn)滿足,動(dòng)點(diǎn)P滿足,則動(dòng)點(diǎn)P的軌跡是橢圓;

(2)已知定點(diǎn)滿足,動(dòng)點(diǎn)M滿足,則動(dòng)點(diǎn)M的軌跡是一條射線;

(3)當(dāng)1<k<4時(shí),曲線C=1表示橢圓;

(4)若動(dòng)點(diǎn)M的坐標(biāo)滿足方程,則動(dòng)點(diǎn)M的軌跡是拋物線。

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境,某單位采用新工藝,把二氧化硅轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月都有處理量,且處理量最多不超過噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一噸二氧化硅得到可利用的化工產(chǎn)品價(jià)值為.

1)設(shè)該單位每月獲利為(元),試將表示月處理(噸)的函數(shù);

2)若要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?

3)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的首項(xiàng)為,公比為,其前項(xiàng)和為,下列命題中正確的是______.(寫出全部正確命題的序號(hào))

1)等比數(shù)列單調(diào)遞增的充要條件是,且;

2)數(shù)列:,……,也是等比數(shù)列;

3;

4)點(diǎn)在函數(shù)為常數(shù),且,)的圖像上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形中, 、分別是、上的點(diǎn), ,的中點(diǎn)現(xiàn)沿著翻折,使平面平面.

(Ⅰ)的中點(diǎn),求證:平面.

(Ⅱ)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在常數(shù)),對(duì)于任意,都有成立,那么稱該函數(shù)為“函數(shù)”.

1)分別判斷函數(shù),是否為“函數(shù)”,若不是,說明理由;

2)若函數(shù)是“函數(shù)”,求實(shí)數(shù)的取值范圍;

3)記所有定義在上的單調(diào)函數(shù)組成的集合為,所有函數(shù)組成的集合為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的偶函數(shù),當(dāng)時(shí),,若關(guān)于的方程有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、與平面、,下列命題:

①若平行內(nèi)的一條直線,則;②若垂直內(nèi)的兩條直線,則;③若,,且,,則;④若,且,則;⑤若,則;⑥若,,,則

其中正確的命題為______(填寫所有正確命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案