8.已知圓錐母線與旋轉(zhuǎn)軸所成的角為30°,母線的長為$\sqrt{2}$,則其底面面積為$\frac{π}{2}$.

分析 首先求得圓錐的底面半徑,再求得底面面積.

解答 解:∵圓錐母線與旋轉(zhuǎn)軸所成的角為30°,母線的長為$\sqrt{2}$,
∴圓錐的底面半徑r=$\frac{\sqrt{2}}{2}$,
∴底面面積S=π•$\frac{1}{2}$=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點(diǎn)評 本題主要考查了圓錐的計算,求出圓錐的底面半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)A1,A2分別為雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上下頂點(diǎn),若雙曲線上存在點(diǎn)M使得兩直線斜率k${\;}_{M{A}_{1}}$•k${\;}_{M{A}_{2}}$,則雙曲線C的離心率的取值范圍為(  )
A.(0,$\frac{\sqrt{6}}{2}$)B.(1,$\frac{\sqrt{6}}{2}$)C.($\frac{\sqrt{6}}{2}$,+∞)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)$f(x)={log_2}(4x)•{log_2}(2x),\frac{1}{4}≤x≤4$.
(1)若t=log2x,求y關(guān)于t的函數(shù)解析式,并寫出t的范圍;?
(2)求f(x) 的最值,并給出最值時相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.單位圓上三點(diǎn)A,B,C滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,則向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示的程序運(yùn)行后輸出的第3個數(shù)是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,m),若$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將(-1.8)${\;}^{\frac{2}{3}}}$,2${\;}^{\frac{2}{3}}}$,(-2)${\;}^{\frac{1}{3}}}$由大到小排列為${2^{\frac{2}{3}}}>{(-1.8)^{\frac{2}{3}}}>{(-2)^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f($\sqrt{x+1}$)的定義域?yàn)閇0,3],則函數(shù)y=f(1-x)的定義域[-1,0].

查看答案和解析>>

同步練習(xí)冊答案