20.某同學(xué)在求解某回歸方程中,已知x,y的取值結(jié)果(y與x呈線性相關(guān))如表:
x234
y64m
并且求得了線性回歸方程為$\widehat{y}$=-$\frac{1}{2}$x+$\frac{13}{2}$,則m等于3.

分析 先求得$\overline{x}$,將$\overline{x}$代入回歸方程求得$\overline{y}$,即可求得m的值.

解答 解:由$\overline{x}$=$\frac{2+3+4}{3}$=3,
線性回歸方程為$\widehat{y}$=-$\frac{1}{2}$x+$\frac{13}{2}$必經(jīng)過樣本中心點($\overline{x}$,$\overline{y}$),
將$\overline{x}$代入,求得$\overline{y}$=5,
由$\overline{y}$=$\frac{6+4+m}{3}$,
求得m=5,
故答案為:5.

點評 本題考查線性回歸方程的應(yīng)用,計算過程簡單,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$⊥$\overrightarrow$,并且$\overrightarrow{a}$=(3,x),$\overrightarrow$=(7,12),則x=( 。
A.-$\frac{7}{4}$B.$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x3+ax2+bx+c,給出四個結(jié)論:
①函數(shù)f(x)一定有兩個極值點.
②若x=x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)上單調(diào)遞減.
③f(x)的圖象是中心對稱圖形.
④若f′(x0)=0,則x=x0是f(x)的極值點.
則結(jié)論正確的有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在區(qū)間[-$\frac{π}{4}$,$\frac{2π}{3}$]上任取一個數(shù)x,則函數(shù)f(x)=3sin(2x-$\frac{π}{6}$)的值不小于0的概率為$\frac{6}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知{an}是遞增的等比數(shù)列,a2,a4方程x2-40x+256=0的根.
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{n+2}{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn,并證明:$\frac{3}{4}$≤Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.用數(shù)學(xué)歸納法證明命題“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”,第二步假設(shè)n=2k-1(k∈N+)命題為真時,進(jìn)而需證n=2k+1時,命題亦真.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,∠A=60°,AB=2,且△ABC的面積S=$\frac{\sqrt{3}}{2}$,則AC的長為( 。
A.2B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:a2≥0(a∈R),命題q:函數(shù)f(x)=x2-2x在區(qū)間[$\begin{array}{l}{0,+∞}\end{array}$)上單調(diào)遞增,則下列命題中為真命題的是( 。
A.p∧qB.p∨qC.(?p)∧(?q)D.(?p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用0到9這10個數(shù)字,可以組成沒有重復(fù)數(shù)字的三位數(shù)的個數(shù)是(  )
A.720B.648C.103D.310

查看答案和解析>>

同步練習(xí)冊答案