【題目】若x1 , x2 , …,x2017的平均數(shù)為4,標(biāo)準(zhǔn)差為3,且yi=﹣3(xi﹣2),i=x1 , x2 , …,x2017 , 則新數(shù)據(jù)y1 , y2 , …,y2017的平均數(shù)和標(biāo)準(zhǔn)差分別為( )
A.﹣6 9
B.﹣6 27
C.﹣12 9
D.﹣12 27
【答案】A
【解析】解:x1,x2,…,x2017的平均數(shù)為 =4,標(biāo)準(zhǔn)差為s=3,
且yi=﹣3(xi﹣2),i=x1,x2,…,x2017,
∴新數(shù)據(jù)y1,y2,…,y2017的平均數(shù)是 =﹣3( ﹣2)=﹣3×(4﹣2)=﹣6;
方差為(﹣3)2s2=9×32=81,標(biāo)準(zhǔn)差為 =9;
綜上,新數(shù)據(jù)的平均數(shù)和標(biāo)準(zhǔn)差分別為﹣6和9.
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識,掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|< )的圖象過點( , ).
(1)求函數(shù)f(x)在[0, ]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若x=C是曲線y=f(x)的一條對稱軸,且△ABC的面積為2 ,a+b=6,求邊c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)討論函數(shù)f(x)= ex的單調(diào)性,并證明當(dāng)x>0時,(x﹣2)ex+x+2>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時,函數(shù)g(x)= (x>0)有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某城鎮(zhèn)由6條東西方向的街道和7條南北方向的街道組成,其中有一個池塘,街道在此變成一個菱形的環(huán)池大道.現(xiàn)要從城鎮(zhèn)的A處走到B處,使所走的路程最短,最多可以有種不同的走法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,設(shè)圓的方程為(x+2 )2+y2=48,F(xiàn)1是圓心,F(xiàn)2(2 ,0)是圓內(nèi)一點,E為圓周上任一點,線EF2的垂直平分線EF1的連線交于P點,設(shè)動點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l(與x軸不重合)與曲線C交于A、B兩點,與x軸交于點M.
(i)是否存在定點M,使得 + 為定值,若存在,求出點M坐標(biāo)及定值;若不存在,請說明理由;
(ii)在滿足(i)的條件下,連接并延長AO交曲線C于點Q,試求△ABQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+2ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對于任意x≥0,f(x)≥e﹣x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com