8.“m=-1”是“直線x+y=0和直線x+my=0互相垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 求出直線垂直的充要條件,從而判斷出結(jié)論即可.

解答 解:若“直線x+y=0和直線x+my=0互相垂直”,
則-$\frac{1}{m}$=1,解得:m=-1,
故“m=-1”是“直線x+y=0和直線x+my=0互相垂直”的充要條件,
故選:C.

點(diǎn)評(píng) 本題考查了充分必要條件,考查直線的垂直關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知兩個(gè)命題p:?x∈R,sinx+cosx>m恒成立,q:?x∈R,y=(2m2-m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E為PC中點(diǎn).求二面角E-BD-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列說(shuō)法中,正確的是( 。
A.經(jīng)過(guò)不同的三點(diǎn)有且只有一個(gè)平面
B.分別在兩個(gè)平面內(nèi)的兩條直線是異面直線
C.垂直于同一個(gè)平面的兩條直線平行
D.垂直于同一個(gè)平面的兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖a∥α,A是α的另一側(cè)的點(diǎn),B,C,D∈a,線段AB,AC,AD交α于E,F(xiàn),G,若BD=4,AB=9,AE=5,則EG=(  )
A.5B.$\frac{15}{9}$C.3D.$\frac{20}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.(理)設(shè)F1,F(xiàn)2分別是雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=( 。
A.$\sqrt{13}$B.2$\sqrt{17}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$f(x)=\frac{1}{{\sqrt{{{log}_2}^{(2x-1)}}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,+∞)B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.等差數(shù)列{an}中,a1=2,a5=a4+2,則a3=(  )
A.4B.10C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ex(x2+2ax-a2)其中a是常數(shù).
(1)求證:不論a取任何實(shí)數(shù),f(x)在其定義域內(nèi)都存在增區(qū)間與減區(qū)間;
(2)若關(guān)于x的方程f(x)=ex(ax-a2+a)+k在[0,+∞)上有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案