【題目】已知曲線f(x)= (x>0)上有一點(diǎn)列Pn(xn , yn)(n∈N*),過(guò)點(diǎn)Pn在x軸上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)四邊形PnQnQn+1Pn+1的面積是Sn , 求Sn;
(3)在(2)條件下,求證: + +…+ <4.

【答案】
(1)解:n=1時(shí),x1=22﹣1﹣2=1,

n≥2時(shí),x1+x2+x3+…+xn﹣1=2n﹣(n﹣1)﹣2,①

又x1+x2+x3+…+xn=2n+1﹣n﹣2,②

②﹣①得:xn=2n﹣1(n=1仍成立)

故xn=2n﹣1;


(2)解:∵ ,

,又

故四邊形PnQnQn+1Pn+1的面積為:


(3)證明:


【解析】(1)求出n=1時(shí),x1=1;n≥2時(shí),將n換為n﹣1,兩式相減,即可得到所求通項(xiàng)公式;(2)運(yùn)用點(diǎn)滿足函數(shù)式,代入化簡(jiǎn),求出梯形的底和高,由梯形的面積公式,化簡(jiǎn)可得;(3)求得: ,運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)即可得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過(guò)點(diǎn)(1, ),且離心率等于 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)P(2,0)作直線PA,PB交橢圓于A,B兩點(diǎn),且滿足PA⊥PB,試判斷直線AB是否過(guò)定點(diǎn),若過(guò)定點(diǎn)求出點(diǎn)坐標(biāo),若不過(guò)定點(diǎn)請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求過(guò)點(diǎn)A與BC平行的直線方程.
(2)求過(guò)點(diǎn)B,并且在兩個(gè)坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈( ,3)時(shí),求直線AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時(shí),求△ABC的BC邊上的高AH所在直線方程l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ex﹣x.
(1)討論f(x)的單調(diào)性;
(2)若對(duì)x≥0,恒有f(x)≥ax2+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在[2500,3000)(元)月收入段應(yīng)抽出人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)畫出散點(diǎn)圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ ],求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某工廠對(duì)甲乙兩個(gè)車間各10名工人生產(chǎn)的合格產(chǎn)品的統(tǒng)計(jì)結(jié)果的莖葉圖.設(shè)甲、乙的中位數(shù)分別為x、x , 甲、乙的方差分別為s2、s2 , 則(
A.x<x , s2<s2
B.x>x , s2>s2
C.x>x , s2<s2
D.x<x , s2>s2

查看答案和解析>>

同步練習(xí)冊(cè)答案