【題目】在平面直角坐標系xoy中,設點F(1,0),直線l:x=﹣1,點P在直線l上移動,R是線段PF與y軸的交點,RQ⊥FP,PQ⊥l.
(1)求動點Q的軌跡的方程;
(2)記Q的軌跡的方程為E,過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求證:直線MN必過定點R(3,0).

【答案】
(1)解:依題意知,直線l的方程為:x=﹣1,設直線l與x軸交于點K(﹣1,0),由OK平行于直線l可得,

OR是△FPK的中位線,故點R是線段FP的中點.

又RQ⊥FP,∴RQ是線段FP的垂直平分線.∴|PQ|是點Q到直線l的距離.

∵點Q在線段FP的垂直平分線,∴|PQ|=|QF|.

故動點Q的軌跡E是以F為焦點,l為準線的拋物線,其方程為:y2=4x(x>0)


(2)解:設A(xA,yA),B(xB,yB),M(xM,yM),N(xN,yN),直線AB的方程為y=k(x﹣1)

(1)﹣(2)得 ,即 ,

代入方程y=k(x﹣1),解得 所以點M的坐標為

同理可得:N的坐標為(2k2+1,﹣2k). 直線MN的斜率為 ,

方程為; ,整理得y(1﹣k2)=k(x﹣3),

顯然,不論k為何值,(3,0)均滿足方程,所以直線MN恒過定點R(3,0)


【解析】(1)由已知條件知,點R是線段FP的中點,RQ是線段FP的垂直平分線,點Q的軌跡E是以F為焦點,l為準線的拋物線,寫出拋物線標準方程.(2)設出直線AB的方程,把A、B坐標代入拋物線方程,再利用中點公式求出點M的坐標,同理可得N的坐標,求出直線MN的斜率,得到直線MN的方程并化簡,可看出直線MN過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】佛山某中學高三(1)班排球隊和籃球隊各有10名同學,現(xiàn)測得排球隊10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(1)請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較。o需計算);

(2)現(xiàn)從兩隊所有身高超過178cm的同學中隨機抽取三名同學,則恰好兩人來自排球隊一人來自籃球隊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 共線,求邊長b和c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線焦點且傾斜角的直線與拋物線交于點 的面積為

(I)求拋物線的方程;

(II)設是直線上的一個動點,過作拋物線的切線,切點分別為直線與直線軸的交點分別為是以為圓心為半徑的圓上任意兩點,求最大時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2+ax+b,g(x)=x2+cx+d,且f(2x+1)=4g(x),f′(x)=g′(x),f(5)=30,求a,b,c,d的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 的參數(shù)方程為 為參數(shù)),在同一平面直角坐標系中,將曲線 上的點按坐標變換 得到曲線
(1)求曲線 的普通方程;
(2)若點 在曲線 上,點 ,當點 在曲線 上運動時,求 中點 的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學測驗共有10道選擇題,每道題共有四個選項,且其中只有一個選項是正確的評分標準規(guī)定:每選對1道題得5,不選或選錯得0,某考試每道都選并能確定其中有6道題能選對,其余4道題無法確定正確選項,但這4道題中有2道能排除兩個錯誤選項,2題只能排除一個錯誤選項于是該生做這4道題時每道題都從不能排除的選項中隨機挑選一個選項做答,且各題做答互不影響

()求該考生本次測驗選擇題得50分的概率;

()求該考生本次測驗選擇題所得分數(shù)的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)的定義域中任意的x1、x2(x1≠x2),有如下結論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
>0;
④f( )<
當f(x)=2x時,上述結論中正確的有( )個.
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習冊答案