【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D-ABC的體積.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)證明AC⊥BC,利用平面與平面垂直的性質定理,證明BC⊥平面ACD.(2)由(1)可知,BC為三棱錐B-ACD的高,求出BC,S△ACD,即可求解VB-ACD,由等體積性可知,求解幾何體D-ABC的體積
試題解析:(1)證明:在圖中,可得AC=BC=4,從而AC2+BC2=AB2,
故AC⊥BC,又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC平面ABC,
∴BC⊥平面ACD.
(2)解:由(1)可知,BC為三棱錐B-ACD的高,BC=4,S△ACD=8,
∴VB-ACD=S△ACD·BC=×8×4=,
由等體積性可知,幾何體D-ABC的體積為
科目:高中數學 來源: 題型:
【題目】新一屆中央領導集體非常重視勤儉節(jié)約,從“光盤行動”到“節(jié)約辦春晚”.到飯店吃飯是吃光盤子或時打包帶走,稱為“光盤族”,否則稱為“非光盤族”.政治課上政治老師選派幾位同學組成研究性小組,從某社區(qū)[25,55]歲的人群中隨機抽取人進行了一次調查,得到如下統(tǒng)計表:
組數 | 分組 | 頻數 | 頻率 | 光盤族占本組比例 |
第1組 | [25,30) | 50 | 0.05 | 30% |
第2組 | [30,35) | 100 | 0.10 | 30% |
第3組 | [35,40) | 150 | 0.15 | 40% |
第4組 | [40,45) | 200 | 0.20 | 50% |
第5組 | [45,50) | a | b | 65% |
第6組 | [50,55) | 200 | 0.20 | 60% |
(1)求的值,并估計本社區(qū)[25,55)歲的人群中“光盤族”所占比例;
(2)從年齡段在[35,45)的“光盤族”中采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動,并從這8人中選取2人作為領隊.求選取的2名領隊分別來自[35,40)與[40,45)兩個年齡段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面是正三角形,且與底面垂直,底面是邊長為2的菱形, 是的中點,過三點的平面交于, 為的中點,求證:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計劃對其進行改建,在的延長線上取點,使,在半圓上選定一點,改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設.
(1)寫出關于的函數關系式,并指出的取值范圍;
(2)試問多大時,改建后的綠化區(qū)域面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小區(qū)隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數據,整理得到頻數分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區(qū)隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點為圓心的圓過原點O,與x軸另一個交點為M,與y軸另一個交點為N,
(1)求證:△MON的面積為定值;
(2)直線4x+ y-4=0與圓C交于點A、B,若,求圓C的方程
(3)若直線l:x+ y -5=0和圓C交于點A,B兩點,且AB=,求圓心C的坐標。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com