如果θ=3rad,那么角θ的終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:象限角、軸線角
專題:三角函數(shù)的求值
分析:通過角的范圍,判斷角θ所在的象限即可.
解答: 解:因為θ=3rad∈(
π
2
,π),所以θ所在的象限是第二象限;
故選:B.
點評:本題考查弧度制判斷角的范圍,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若角600°的終邊上有一點(-3,a),則a的值是( 。
A、-
3
B、-3
3
C、±
3
D、±3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明“若△ABC的三邊長a,b,c的倒數(shù)成等差數(shù)列,則B<
π
2
”時,“假設(shè)”應(yīng)為( 。
A、B<
π
2
B、B>
π
2
C、B≤
π
2
D、B≥
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
y2
25
+
x2
9
=1上一點滿足∠F1PF2=60°(F1,F(xiàn)2為焦點),則△F1PF2的面積為( 。
A、3
B、3
3
C、
3
3
2
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3與x軸,直線x=1圍成的封閉圖形的面積為( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為得到函數(shù)y=sin(x+
π
3
)的圖象,可將函數(shù)y=cosx的圖象向右平移m(m>0)個單位長度,則m的最小值是( 。
A、
11
6
π
B、
5
6
π
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對邊,若a=1,且2cosC+c=2b,則△ABC的周長的取值范圍是(  )
A、(1,3]
B、[2,4]
C、(2,3]
D、[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項和,若
S3
S6
=
1
3
,則
S6
S11
(  )
A、
3
10
B、
27
77
C、
2
7
D、
6
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在m(m≥2,m∈N+)個不同數(shù)的排列(P1,P2,…,Pm)中,若1≤i<j≤m時,Pi>Pj(即前面某數(shù)大于
后面某數(shù))則稱Pi與Pj構(gòu)成一個逆序,一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù),例如排列(2,40,3,1)中有逆序“2與1”,“40與3”,“40與1”,“3與1”其逆序數(shù)等于4.
(1)求(1,3,40,2)的逆序數(shù);
(2)已知n+2(n∈N+)個不同數(shù)的排列(P1,P2,…,Pn+1,Pn+2)的逆序數(shù)是2.
(。┣螅≒n+2,Pn+1,…,P2,P1)的逆序數(shù)an
(ⅱ)令bn=
an+2
an+1+2
+
an+1+2
an+2
,證明2n+
1
2
≤b1+b2+…+bn<2n+
5
3

查看答案和解析>>

同步練習(xí)冊答案