20.已知f(x)=3-2|x|,g(x)=x2-2x,F(xiàn)(x)=$\left\{\begin{array}{l}{g(x),若f(x)≥g(x)}\\{f(x),若f(x)<g(x)}\end{array}\right.$,則F(x)的最值是( 。
A.最大值為3,最小值為-1B.最大值為3,無最小值
C.最大值為7-2$\sqrt{7}$,無最小值D.既無最大值,又無最小值

分析 作出兩個(gè)函數(shù)的圖象,根據(jù)定義結(jié)合函數(shù)的圖象進(jìn)行求解,聯(lián)立方程組即可得到結(jié)論.

解答 解:作出兩個(gè)函數(shù)的圖象如圖,
由定義得兩個(gè)圖象比較在下方的圖象為F(x)的圖象,
由圖象知F(x)在A處的函數(shù)最大,無最小值,
當(dāng)x<0時(shí),f(x)=3-2|x|=3+2x,
將y=3+2x代入y=x2-2x得x2-2x=3+2x,
此時(shí)x2-4x-3=0,
得x=$\frac{4±\sqrt{16+12}}{2}$=$\frac{4±2\sqrt{7}}{2}$=2±$\sqrt{7}$,
∵x<0,∴x=2-$\sqrt{7}$,
此時(shí)F(x)的最大值為y=3+2x=3+2(2-$\sqrt{7}$)=7-2$\sqrt{7}$,
故選:C

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,根據(jù)條件利用數(shù)形結(jié)合是解決本題的關(guān)鍵.考查學(xué)生的轉(zhuǎn)化和計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元;未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量x的中位數(shù);
(2)將y表示為x的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線3x2-y2=k的焦距是8,則k的值為( 。
A.±12B.12C.±48D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在一個(gè)不透明的箱子里放有四個(gè)質(zhì)地相同的小球,四個(gè)小球標(biāo)的號(hào)碼分別為1,1,2,3.現(xiàn)甲、乙兩位同學(xué)依次從箱子里隨機(jī)摸取一個(gè)球出來,記下號(hào)碼并放回.
(Ⅰ)求甲、乙兩位同學(xué)所摸的球號(hào)碼相同的概率;
(Ⅱ)求甲所摸的球號(hào)碼大于乙所摸的球號(hào)碼的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\sqrt{{x^2}-4}$的單調(diào)遞增區(qū)間是( 。
A.(-∞,0)B.(0,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)y=f(x)是奇函數(shù),并且對(duì)任意x∈R,均有f(-x)=f(x+2),又當(dāng)x∈(0,1]時(shí),f (x)=2 x,則f($\frac{5}{2}$)的值是( 。
A.$\frac{\sqrt{72}}{2}$B.-$\frac{\sqrt{2}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線$\sqrt{2}$x+$\sqrt{6}$y+1=0的傾斜角是( 。
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)長(zhǎng)軸在x軸上,長(zhǎng)軸的長(zhǎng)等于12,離心率等于$\frac{2}{3}$;
(2)長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且橢圓過點(diǎn)(-2,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是[0,1]上的不減函數(shù),即對(duì)于0≤x1≤x2≤1有f(x1)≤f(x2),且滿足(1)f(0)=0;(2)f($\frac{x}{3}$)=$\frac{1}{2}$f(x);(3)f(1-x)=1-f(x),則f($\frac{1}{2016}$)=(  )
A.$\frac{1}{3}$B.$\frac{1}{64}$C.$\frac{1}{128}$D.$\frac{1}{256}$

查看答案和解析>>

同步練習(xí)冊(cè)答案