【題目】給定整數(shù)(),設(shè)集合,記集合

(1)若,求集合;

(2)若構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,求證:集合中的元素個(gè)數(shù)為;

(3)若構(gòu)成以為首項(xiàng),為公比的等比數(shù)列,求集合中元素的個(gè)數(shù)及所有元素之和.

【答案】(1)(2)見(jiàn)解析(3)

【解析】

(1)由新定義和集合的列舉法,可得所求集合;

(2)運(yùn)用等差數(shù)列為遞增數(shù)列,以及性質(zhì),即可得到所求個(gè)數(shù);

(3)由等比數(shù)列的通項(xiàng)公式和性質(zhì),結(jié)合新定義計(jì)算可得所求結(jié)論.

(1)因?yàn)?/span>

當(dāng)時(shí),

(2) 因?yàn)?/span>構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,所以有(),以及().

此時(shí),集合中的元素有以下大小關(guān)系:

因此,集合中含有個(gè)元素.

(3)由題設(shè),

設(shè)集合,

①先證中的元素個(gè)數(shù)為,即從集合中任取兩個(gè)元素,它們的和互不相同.

不妨設(shè),于是

顯然

假設(shè),可得,即

因?yàn)?/span>,,所以,又,于是,等式不成立.

因此,

同理可證

②再證

不妨設(shè),于是

顯然,

假設(shè),可得,即

因?yàn)?/span>,所以,又,于是,等式不成立.

因此,

由①②,得,且

此時(shí),集合中的元素個(gè)數(shù)為

集合中所有元素的和為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過(guò)匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期低于平均數(shù)的患者,稱為短潛伏者,潛伏期不低于平均數(shù)的患者,稱為長(zhǎng)潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中長(zhǎng)潛伏者的人數(shù);

2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與患者年齡有關(guān);

短潛伏者

長(zhǎng)潛伏者

合計(jì)

60歲及以上

90

60歲以下

140

合計(jì)

300

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市環(huán)保部門為了讓全市居民認(rèn)識(shí)到冬天燒煤取暖對(duì)空氣數(shù)值的影響,進(jìn)而喚醒全市人民的環(huán)保節(jié)能意識(shí).對(duì)該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進(jìn)行統(tǒng)計(jì)分析,得出表數(shù)據(jù):

(天)

(天)

1)以統(tǒng)計(jì)數(shù)據(jù)為依據(jù),求出關(guān)于的線性回歸方程;

2)根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該市燒煤取暖的天數(shù)為時(shí)空氣數(shù)值不合格的天數(shù).

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),有以下命題:

是奇函數(shù);

單調(diào)遞增函數(shù);

③方程僅有1個(gè)實(shí)數(shù)根;

④如果對(duì)任意,則的最大值為2.

則上述命題正確的有_____________.(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

如圖,四棱錐的底面為菱形,平面,

分別為的中點(diǎn),

)求證:平面平面

)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為我國(guó)數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色、相鄰區(qū)域顏色不同,則區(qū)域不同涂色的方法種數(shù)為(

A.360B.400C.420D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝著10個(gè)外形完全相同的小球,其中標(biāo)有數(shù)字1的小球有1個(gè),標(biāo)有數(shù)字2的小球有2個(gè),標(biāo)有數(shù)字3的小球有3個(gè),標(biāo)有數(shù)字4的小球有4個(gè).

現(xiàn)從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的8倍計(jì)分,每個(gè)小球被取出的可能性都相等,用表示取出的三個(gè)小球上的最大數(shù)字,求:

1)取出的3個(gè)小球上的數(shù)字互不相同的概率;

2)隨機(jī)變量的分布列;

3)計(jì)算介于20分到40分之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2019的自主招生考試中,考生筆試成績(jī)分布在,隨機(jī)抽取200名考生成績(jī)作為樣本研究,按照筆試成績(jī)分成5組,第1組成績(jī)?yōu)?/span>,第2組成績(jī)?yōu)?/span>,第3組成績(jī)?yōu)?/span>,第4組成績(jī)?yōu)?/span>,第5組成績(jī)?yōu)?/span>,樣本頻率分布直方圖如下:

1)估計(jì)全體考生成績(jī)的中位數(shù);

2)為了能選撥出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行外語(yǔ)交流面試,求這2名學(xué)生均來(lái)自同一組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案