等差數(shù)列{an}中,a1+a3=12,a2+a4=6,求這個數(shù)列的通項公式an及它的前n項和Sn

解:由已知得:2a1+2d=12,2a1+4d=6 (2分)
解得a1=9,d=-3 (6分)
∴an=9-3(n-1)=12-3n (8分)
∴Sn===-n2+n (10分)
分析:利用等差數(shù)列的通項公式,借助于條件a1+a3=12,a2+a4=6,可求a1,d的值,從而可求 數(shù)列的通項公式an及它的前n項和Sn
點評:本題考查等差數(shù)列的通項公式和前n項和公式,是基礎題.解題時要認真審題,正確運用公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項和Sn<0時,n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項和S2n-1=38,則n等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,設S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習冊答案