分析 (1)直接代入計(jì)算即可;
(2)發(fā)現(xiàn)f(x)+f($\frac{1}{x}$)=1,代入化簡(jiǎn)即可證明;
(3)利用(2)的結(jié)論即可得出.
解答 解:(1)f(2)=$\frac{4}{5}$,f($\frac{1}{2}$)=$\frac{1}{5}$,f(3)=$\frac{9}{10}$,f($\frac{1}{3}$)=$\frac{1}{10}$,
(2)f(x)+f($\frac{1}{x}$)=1,
理由如下:f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,
(3)由(2)可得,f(1)+f(2)+f(3)+…+f(2006)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$)
=f(1)+[f(2)+f($\frac{1}{2}$)]+[f(3)+f($\frac{1}{3}$)]+…+[f(2006+f($\frac{1}{2016}$)],
=$\frac{1}{2}$+2015
=$\frac{4031}{2}$
點(diǎn)評(píng) 本題考查函數(shù)的值,考查數(shù)列的求和,求得f(x)+f($\frac{1}{x}$)=1是關(guān)鍵,考查分析、轉(zhuǎn)化與運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | 頻數(shù) |
[1.30,1.34) | 4 |
[1.34,1.38) | 25 |
[1.38,1.42) | 30 |
[1.42,1.46) | 29 |
[1.46,1.50) | 10 |
[1.50,1.54) | 2 |
合計(jì) | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45 | B. | 35 | C. | 17 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=ex | B. | y=sinx | C. | y=cosx | D. | y=lnx2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2,4} | B. | {0,1,2,3,4,5} | C. | {2,4,7,8} | D. | {1,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(kπ,kπ+\frac{π}{4})$ | B. | $(2kπ,2kπ+\frac{π}{2})$ | C. | $[kπ+\frac{π}{4},kπ+\frac{π}{2})$ | D. | 以上都不對(duì).(k∈Z) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com