18.中心在原點(diǎn),對(duì)稱軸是坐標(biāo)軸,且過點(diǎn)(0,2)的等軸雙曲線的方程為y2-x2=4.

分析 設(shè)等軸雙曲線的方程為x2-y2=λ≠0.把點(diǎn)P(0,2)代入解得λ即可.

解答 解:設(shè)等軸雙曲線的方程為x2-y2=λ≠0.
把點(diǎn)(0,2)代入可得:-4=λ,即λ=-4.
∴要求的等軸雙曲線的方程為y2-x2=4.
故答案為:y2-x2=4.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,熟練掌握等軸雙曲線的標(biāo)準(zhǔn)方程是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若X是一個(gè)非空集合,M是一個(gè)以X的某些子集為元素的集合,且滿足:
(1)X∈M,Φ∈M;
(2)對(duì)于X的任意子集A,B,當(dāng)A∈M,B∈M時(shí),A∪B∈M,A∩B∈M.則稱M是集合X的一個(gè)“M-集合類”.
例如:M={Φ,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個(gè)“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個(gè)數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若α為第三象限角,則$\sqrt{1-sin{α}^{2}}$的結(jié)果為(  )
A.sinαB.-sinαC.cosαD.-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖是容量為100的樣本的頻率分布直方圖,其中a∈R.試根據(jù)圖中的數(shù)據(jù)回答下列問題:
(1)樣本數(shù)據(jù)落在[2,6)內(nèi)的頻率為0.08;
(2)樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.公比為2的正項(xiàng)等比數(shù)列{an},a3a11=16,則a5=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.完成進(jìn)位制之間的轉(zhuǎn)化:413(5)=213(7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線x-$\sqrt{3}$y+3=0的斜率是( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當(dāng)m=n=5時(shí),若$f(x)={a_5}{(1-x)^5}+{a_4}{(1-x)^4}+…+{a_1}(1-x)+{a_0}$,求a0+a2+a4的值;
(2)f(x)展開式中x的系數(shù)是9,當(dāng)m,n變化時(shí),求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示,程序據(jù)圖(算法流程圖)的輸出結(jié)果為( 。
A.$\frac{3}{4}$B.$\frac{1}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

同步練習(xí)冊(cè)答案