過點(diǎn)P(1,4)引一條直線,使它在兩條坐標(biāo)軸上的截距為正值,且它們的和最小,求這條直線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,函數(shù)f(x)=x+的定義域?yàn)?0,+∞).設(shè)點(diǎn)P是函數(shù)圖象上任一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M,N.
(1)證明:|PM|·|PN|為定值;
(2)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,頂點(diǎn),邊上的中線所在直線的方程是,邊上高所在直線的方程是.
(1)求點(diǎn)、C的坐標(biāo); (2)求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓P在x軸上截得線段長為2,在y軸上截得線段長為2.
(1)求圓心P的軌跡方程;
(2)若P點(diǎn)到直線y=x的距離為,求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過點(diǎn)(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點(diǎn),過點(diǎn)的內(nèi)角平分線所在直線方程是,過點(diǎn)C的中線所在直線的方程是
(1)求頂點(diǎn)B的坐標(biāo);(2)求直線BC的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩條直線,相交于點(diǎn).
(1)求交點(diǎn)的坐標(biāo);
(2)求過點(diǎn)且與直線垂直的直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com