【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則(
A.對于任意正實數(shù)x恒有f(x)≥g(x)
B.存在實數(shù)x0 , 當(dāng)x>x0時,恒有f(x)>g(x)
C.對于任意正實數(shù)x恒有f(x)≤g(x)
D.存在實數(shù)x0 , 當(dāng)x>x0時,恒有f(x)<g(x)

【答案】D
【解析】解:設(shè)h(x)=f(x)﹣g(x)=2017x+sin2017x﹣log2017x﹣2017x,x>0,

由h(1)=2017+sin20171﹣log20171﹣2017=sin20171>0,

h(2)=2017×2+sin20172﹣log20172﹣20172<0,

可得h(1)h(2)<0,

且h′(x)=2017+2017sin2016xcosx﹣ ﹣2017xln2017<0,

可得h(x)在(1,2)遞減,

可得h(x)在(1,2)有一個零點,設(shè)為x0,

且當(dāng)x>x0時,h(x)<h(x0)=0,即f(x)<g(x),

故選:D.

設(shè)h(x)=f(x)﹣g(x)=2017x+sin2017x﹣log2017x﹣2017x,x>0,求出h(1)和h(2)的符號,以及h(x)的導(dǎo)數(shù),判斷單調(diào)性,由零點存在定理即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,x[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).

(1)h(a).

(2)是否存在實數(shù)m>n>3,當(dāng)h(a)的定義域為[n,m],值域為[n2,m2]?若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正項數(shù)列{an}中,已知a1=1,且滿足an+1=2an (n∈N*)
(Ⅰ)求a2 , a3;
(Ⅱ)證明.a(chǎn)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平行四邊形ABCD中,A1,2,B2,1,中心E3,3

1判斷平行四邊形ABCD是否為正方形;

2點Px,y在平行四邊形ABCD的邊界及內(nèi)部運動,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:mx﹣y﹣m+2=0與圓C:x2+y2+4x﹣4=0交于A,B兩點,若△ABC為直角三角形,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn . 若Sn=2an﹣n,則 + + + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)當(dāng)x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx(a為實常數(shù))
(1)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長為a,M,N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關(guān)系為(
A.相交
B.平行
C.垂直
D.不能確定

查看答案和解析>>

同步練習(xí)冊答案