求雙曲線
y2
16
-
x2
9
=1
的實軸和虛軸的長、頂點和焦點的坐標、離心率.
分析:利用雙曲線的性質即刻求得
y2
16
-
x2
9
=1的實軸和虛軸的長、頂點和焦點的坐標、離心率.
解答:解:由題意,得雙曲線的焦點在y軸上,a=4,b=3,
則c=
a2+b2
=5,
所以雙曲線的實軸、虛軸的長分別為8,6,
頂點坐標為(0,-4),(0,4),
焦點坐標為(0,-5),(0,5),
離心率為e=
c
a
=
5
4
點評:本題考查雙曲線的簡單性質,掌握雙曲線的性質是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

點P是雙曲線
x2
9
-
y2
16
=1
的右支上一點,M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,
(1)求雙曲線的漸近線方程;
(2)求|PM|-|PN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求滿足下列條件的雙曲線的標準方程:
(1)已知雙曲線的焦點F1,F(xiàn)2在x軸上,離心率為
2
,且過點(4,-
10)
;
(2)與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且經(jīng)過點M(-3,2
3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求滿足下列條件的曲線方程:
(1)經(jīng)過兩點P(-2
3
,1),Q(
3
,-2)
的橢圓的標準方程;
(2)與雙曲線
x2
9
-
y2
16
=1
有公共漸近線,且經(jīng)過點(-3,2
3
)的雙曲線的標準方程;
(3)焦點在直線x+3y+15=0上的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源:福建模擬 題型:解答題

已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

同步練習冊答案