設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知拋物線D的頂點(diǎn)是橢圓的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合。
(1)求拋物線D的方程;
(2)已知?jiǎng)又本l過點(diǎn)P(4,0),交拋物線D于A,B兩點(diǎn)
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程,如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知橢圓,斜率為的直線交橢圓于兩點(diǎn),且點(diǎn)在直線的上方,
(1)求直線與軸交點(diǎn)的橫坐標(biāo)的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且
(Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O:,點(diǎn)O為坐標(biāo)原點(diǎn),一條直線:與圓O相切并與橢圓交于不同的兩點(diǎn)A、B
(1)設(shè),求的表達(dá)式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線和直線沒有公共點(diǎn)(其中、為常數(shù)),動(dòng)點(diǎn)是直線上的任意一點(diǎn),過點(diǎn)引拋物線的兩條切線,切點(diǎn)分別為、,且直線恒過點(diǎn).
(1)求拋物線的方程;
(2)已知點(diǎn)為原點(diǎn),連結(jié)交拋物線于、兩點(diǎn),
證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
21.(本小題滿分14分)
已知直線過拋物線的焦點(diǎn)且與拋物線相交于兩點(diǎn),自向準(zhǔn)線作垂線,垂足分別為 .
(1)求拋物線的方程;
(2)證明:無論取何實(shí)數(shù)時(shí),,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,
且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com