6.2015年7月31日,國(guó)際奧委會(huì)在吉隆坡正式宣布2022年奧林匹克冬季奧運(yùn)會(huì)(簡(jiǎn)稱(chēng)冬奧會(huì))在北京和張家口兩個(gè)城市舉辦.某中學(xué)為了普及奧運(yùn)會(huì)知識(shí)和提高學(xué)生參加體育運(yùn)動(dòng)的積極性,舉行了一次奧運(yùn)知識(shí)競(jìng)賽.隨機(jī)抽取了30名學(xué)生的成績(jī),繪成如圖所示的莖葉圖,若規(guī)定成績(jī)?cè)?5分以上(包括75分)的學(xué)生定義為甲組,成績(jī)?cè)?5分以下(不包括75分)定義為乙組.
(1)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問(wèn)有沒(méi)有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān);
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)選取3人,用ξ表示所選3人中甲組的人數(shù),試寫(xiě)出ξ的分布列,并求出ξ的數(shù)學(xué)期望.附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2>k00.1000.0500.010
K2.7063.8416.635

分析 (1)作出2×2列聯(lián)表,由列聯(lián)表數(shù)據(jù)代入公式求出K2≈1.83<2.706,從而得到?jīng)]有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān).
(2)①用A表示“至少有1 人在甲組”,利用對(duì)立事件概率計(jì)算公式能求出至少有1人在甲組的概率.
②由題意知,ξ~$B(3,\frac{2}{5})$,由此能求出ξ的分布列和數(shù)學(xué)期望.

解答 解:(1)作出2×2列聯(lián)表:

甲組乙組合計(jì)
男生7613
女生51217
合計(jì)121830
由列聯(lián)表數(shù)據(jù)代入公式得${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}≈1.83$,因?yàn)?.83<2.706,故沒(méi)有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān).(6分)
(2)①用A表示“至少有1人在甲組”,則$p(A)=1-\frac{C_3^2}{C_5^2}=\frac{7}{10}$.(8分)
②由題知,抽取的30名學(xué)生中有12名學(xué)生是甲組學(xué)生,抽取1名學(xué)生是甲組學(xué)生的概率為$\frac{12}{30}=\frac{2}{5}$,那么從所有的中學(xué)生中抽取1名學(xué)生是甲組學(xué)生的概率是$\frac{2}{5}$,又因?yàn)樗】傮w數(shù)量較多,抽取3名學(xué)生可以看出3次獨(dú)立重復(fù)實(shí)驗(yàn),于是ξ服從二項(xiàng)分布$B(3,\frac{2}{5})$.
顯然ξ的取值為0,1,2,3.且$P(ξ=k)=C_3^k{(\frac{2}{5})^k}{(1-\frac{2}{5})^{3-k}},k=0,1,2,3$.
所以得分布列為:
ξ0123
P$\frac{27}{125}$$\frac{54}{125}$$\frac{36}{125}$$\frac{8}{125}$
數(shù)學(xué)期望$Eξ=3×\frac{2}{5}=\frac{6}{5}$(12分)

點(diǎn)評(píng) 本題考查莖葉圖的應(yīng)用,考查概率的求法,考查二項(xiàng)分布的性質(zhì)的合理運(yùn)用,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若直線(xiàn)l的傾斜角的取值范圍為[$\frac{π}{3}$,$\frac{3π}{4}$],則直線(xiàn)l的斜率的取值范圍為(-∞,-1]∪[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在平行四邊形ABCD中,$\overrightarrow{AC}$•$\overrightarrow{CB}$=0,AC=$\sqrt{2}$,BC=1,若將其沿AC折成直二面角D-AC-B,三棱錐D-ABC的各頂點(diǎn)都在球O的球面上,則球O的表面積為( 。
A.16πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(1,1)和B(2,-2),且圓心C在直線(xiàn)l:x-y+1=0上,則點(diǎn)C與坐標(biāo)原點(diǎn)的距離為( 。
A.$\sqrt{13}$B.5C.13D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開(kāi)”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問(wèn)是否有的99%把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開(kāi)”政策的支持度有差異:
(2)若對(duì)年齡在[5,15)的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,恰好兩人都支持“生育二胎放開(kāi)”的概率是多少?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
參考數(shù)據(jù):
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.180B.360C.144+72$\sqrt{2}$D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知直線(xiàn)3x+4y+c=0與圓心為C的圓x2+(y-1)2=2相交于A,B兩點(diǎn),且△ABC為直角三角形,則實(shí)數(shù)c等于1或-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線(xiàn)y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長(zhǎng)為$2\sqrt{3}$,則k=( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)?shù)列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$,…的一個(gè)通項(xiàng)公式為( 。
A.an=$\frac{n-1}{n+1}$  (n∈N*B.an=$\frac{n-1}{2n+1}$  (n∈N*
C.an=$\frac{2n}{2n+1}$ (n∈N*D.an=$\frac{2(n-1)}{2n-1}$ (n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案