如圖,橢圓
上的點M與橢圓右焦點
的連線
與x軸垂直,且OM(O是坐標(biāo)原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)過
且與AB垂直的直線交橢圓于P、Q,若
的面積是20,求此時橢圓的方程.
(1)
;(2)
試題分析:(1)由橢圓方程可知
。將
代入橢圓方程可得
,分析可知點
在第一象限,所以
。由兩直線平行斜率相等,可得
,解得
,所以
,從而可得離心率
。(2)由(1)可得
,即直線
的斜率為
,所以直線
的斜率為
,又因為過點
可得直線
的方程為
,將此直線方程與橢圓方程聯(lián)立消去
得關(guān)于
的一元二次方程,可得根與系數(shù)的關(guān)系。可將
分割長以
為同底的兩個三角形,兩三角形的高的和為
(還可用弦長公式求
在用點到線的距離公式求高,然后再求面積)。根據(jù)三角形面積為
可求
的值,從而可得橢圓方程。
(1)易得
5分
(2)設(shè)直線PQ的方程為
.代入橢圓方程消去x得:
,整理得:
∴
因此a
2=50,b
2=25,所以橢圓方程為
12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知點A
,橢圓E:
的離心率為
;F是橢圓E的右焦點,直線AF的斜率為
,O為坐標(biāo)原點
(I)求E的方程;
(II)設(shè)過點A的動直線
與E 相交于P,Q兩點。當(dāng)
的面積最大時,求
的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,
為橢圓在
軸正半軸上的焦點,
、
兩點在橢圓
上,且
,定點
.
(1)求證:當(dāng)
時
;
(2)若當(dāng)
時有
,求橢圓
的方程;
(3)在(2)的橢圓中,當(dāng)
、
兩點在橢圓
上運動時,試判斷
是否有最大值,若存在,求出最大值,并求出這時
、
兩點所在直線方程,若不存在,給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
,則以點
為中點的弦所在直線方程為( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
:
,過點
的直線與橢圓
交于
、
兩點,若點
恰為線段
的中點,則直線
的方程為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
[2014·綿陽模擬]在平面直角坐標(biāo)系xOy中,橢圓C:
+
=1的左、右焦點分別是F
1、F
2,P為橢圓C上的一點,且PF
1⊥PF
2,則△PF
1F
2的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知F
1、F
2為橢圓
的左右焦點,過F
1的直線交橢圓于A、B兩點,若
,則
= _____________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知P(x,y)為橢圓
上一點,F為橢圓C的右焦點,若點M滿足
且
,則
的最小值為( )
A. | B.3 | C. | D.1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
經(jīng)過點P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設(shè)直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為
.問:是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>