已知等差數(shù)列{an},a1=15,S5=55,則過(guò)點(diǎn)P(3,a2),Q(4,a4)的直線的斜率為( 。
分析:由等差數(shù)列{an},a1=15,S5=55,求出公差d=-2,再得用等差數(shù)列的通項(xiàng)公式求出P(3,13),Q(4,9),由此能夠求出過(guò)點(diǎn)P(3,a2),Q(4,a4)的直線的斜率.
解答:解:∵等差數(shù)列{an},a1=15,S5=55,
a1=15
5×15+
5×4
2
d=55
,
解得d=-2.
∴a2=15-2=13,
a4=13-6=9,
∴P(3,13),Q(4,9),
kPQ=
9-13
4-3
=-4

故選C.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意直線斜率公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案