【題目】如圖,圓

1)若圓軸相切,求圓的方程;

2)求圓心的軌跡方程;

3)已知,圓軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓 相交于兩點問:是否存在實數(shù),使得若存在,求出實數(shù)的值,若不存在,請說明理由.

【答案】1;(23存在,使得

【解析】試題分析: 在圓的方程中,令,可得關(guān)于的一元二次方程的判別式等于零,由此求得的值,從而求得所求圓的方程。

(2)消去圓心坐標中的參數(shù)即可先求出,假設(shè)存在實數(shù),當直線直線軸不垂直時,設(shè)直線的方程為,代入,利用韋達定理,根據(jù)的斜率之和等于零求得的值,經(jīng)過檢驗,當直線軸垂直時,這個值仍然滿足從而得出結(jié)論

解析:1)由圓軸相切,可知圓心的縱坐標的絕對值與半徑相等.故先將圓的方程化成標準方程為: ,由求得.即可得到所求圓的方程為: ;

2)求圓心點坐標為,則 圓心點的軌跡方程為

3)令,得,即所以

假設(shè)存在實數(shù),當直線AB與軸不垂直時,設(shè)直線AB的方程為,

代入得, ,設(shè)從而

因為

因為,所以,即,得

當直線AB軸垂直時,也成立.故存在,使得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B分別是直線y=x和y=-x上的兩個動點,線段AB的長為,D是AB的中點.

(1)求動點D的軌跡C的方程;

(2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,當|PQ|=3時,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】五一期間,某商場決定從種服裝、種家電、種日用品中,選出種商品進行促銷活動.

(1)試求選出種商品中至少有一種是家電的概率;

(2)商場對選出的某商品采用抽獎方式進行促銷,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,規(guī)定購買該商品的顧客有次抽獎的機會: 若中一次獎,則獲得數(shù)額為元的獎金;若中兩次獎,則獲得數(shù)額為元的獎金;若中三次獎,則共獲得數(shù)額為 元的獎金. 假設(shè)顧客每次抽獎中獎的概率都是,請問: 商場將獎金數(shù)額最高定為多少元,才能使促銷方案對商場有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程.

在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

(1)畫出莖葉圖

(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰參加比賽比較合適?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在北京召開的國際數(shù)學家大會會標如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是 ,則sin2θ﹣cos2θ的值等于(

A.1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數(shù)f(x)的解析式;
(2)當x∈[﹣ , ]時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案