已知函數(shù)是奇函數(shù)。
(1)求實數(shù)a的值;
(2)判斷函數(shù)在R上的單調性并用定義法證明;
(3)若函數(shù)的圖像經(jīng)過點,這對任意不等式恒成立,求實數(shù)m的范圍。
(1)-1
(2)利用定義法設作差,然后變形定號來得到證明即可。
(3)

試題分析:(1)由,得f(0)=0,解得
(2)根據(jù)題意,由于函數(shù)是奇函數(shù),那么設
則可知,可知函數(shù)
函數(shù)上為減函數(shù)。證明略
(3) 
所以由題意上恒成立。
所以
點評:主要是考查了函數(shù)單調性以及函數(shù)的最值的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某單位設計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導知識,對于厚度為的均勻介質,兩側的溫度差為,單位時間內,在單位面積上通過的熱量,其中為熱傳導系數(shù).假定單位時間內,在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導系數(shù)為,空氣的熱傳導系數(shù)為.)
(1)設室內,室外溫度均分別為,,內層玻璃外側溫度為,外層玻璃內側溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內,在單位面積上通過的熱量(結果用表示);
(2)為使雙層中空玻璃單位時間內,在單位面積上通過的熱量只有單層玻璃的4%,應如何設計的大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設定義在上的函數(shù)滿足,則(   )
A.13B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) 是自然對數(shù)的底數(shù))的最小值為
(Ⅰ)求實數(shù)的值;
(Ⅱ)已知,試解關于的不等式 ;
(Ⅲ)已知.若存在實數(shù),使得對任意的,都有,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù). 若實數(shù)a, b滿足, 則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)
(1)記集合,則所對應的的零點的取值集合為____。
(2)若           .(寫出所有正確結論的序號)


③若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)一定正確的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若函數(shù)上有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列所示的四幅圖中,可表示為y=f(x)的圖像的只可能是(  )

查看答案和解析>>

同步練習冊答案