已知直線l:(m-2)x+(2m+2)y=m+4和圓C:(x+4)2+(y-1)2=25.

(1)證明不論m為什么實(shí)數(shù),直線l與圓C恒有兩個(gè)交點(diǎn);

(2)求直線l被圓C截得的弦長(zhǎng)最小時(shí)的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、已知直線l、m,平面a、b,且l⊥a,m?b,給出下列四個(gè)命題;
(1)若a∥b,則l⊥m.(2)若l⊥m,則a∥b.
(3)若a⊥b,則l∥m.(4)若l∥m,則a⊥b.
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax-y+
2
-a=0
(a∈R),圓O:x2+y2=4.
(Ⅰ)求證:直線l與圓O相交;
(Ⅱ)判斷直線l被圓O截得的弦何時(shí)最短?并求出最短弦的長(zhǎng)度;
(Ⅲ)如圖,已知AC、BD為圓O的兩條相互垂直的弦,垂足為M(1,
2
),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下面四個(gè)命題:
①曲線y=-x2+2x+4在點(diǎn)(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點(diǎn)P到點(diǎn)A(
1
2
,0),B(
1
2
,2)
及直線x=-
1
2
的距離相等,那么滿足條件的點(diǎn)P有且只有1個(gè).
其中正確命題的序號(hào)是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:走向清華北大同步導(dǎo)讀·高二數(shù)學(xué)(上) 題型:044

已知直線l:(m-2)x+3y+2m=0.

(1)求證:直線l過定點(diǎn)P;

(2)若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,將三角形AOB的面積記為U.求U的最小值與相應(yīng)的直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案