5.已知三棱錐A-BCD,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),若AC=BD,則四邊形EFGH為( 。
A.梯形B.矩形C.菱形D.正方形

分析 作出如圖的空間四邊形,連接AC,BD可得一個(gè)三棱錐,將四個(gè)中點(diǎn)連接,得到一個(gè)四邊形,可證明其是一個(gè)菱形.

解答 解:作出如圖的空間四邊形,連接AC,BD可得一個(gè)三棱錐,將四個(gè)中點(diǎn)連接,得到一個(gè)四邊形EFGH,
由中位線的性質(zhì)知EH∥FG,EF∥HG
故四邊形EFGH是平行四邊形
又AC=BD,故有HG=$\frac{1}{2}$AC=$\frac{1}{2}$BD=EH
故四邊形EFGH是菱形
故選C.

點(diǎn)評(píng) 本題考查空間中直線與干線之間的位置關(guān)系,解題的關(guān)鍵是掌握空間中直線與直線之間位置關(guān)系的判斷方法,本題涉及到線線平行的證明,中位線的性質(zhì)等要注意這些知識(shí)在應(yīng)用時(shí)的轉(zhuǎn)化方式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.△ABC的外接圓圓心為O,半徑為2,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}$=$\overrightarrow 0$,且$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}$|,則$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影為(  )
A.1B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=sinx-cosx+x+1.
(Ⅰ)當(dāng)x∈[0,2π],求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若函數(shù)y=f(x)-ax在[0,π]上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線y2=-6x的焦點(diǎn)為F,點(diǎn)M,N在拋物線上,且滿足$\overrightarrow{FM}=k\overrightarrow{FN}(k≠0)$,則|MN|的最小值6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線2x-y+1=0與圓C:(x-1)2+(y-1)2=1相交于A、B兩點(diǎn),則弦AB的長為$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x3-x+2在下列區(qū)間內(nèi)一定存在零點(diǎn)的是( 。
A.(1,2)B.(0,1)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若直線l被圓x2+y2=4所截得的弦長不小于$2\sqrt{3}$,則l與下列曲線一定有公共點(diǎn)的是( 。
A.$\frac{x^2}{2}+{y^2}=1$B.(x-1)2+y2=1C.y=x2D.x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$y=\frac{{{x^2}-x+4}}{x}\;\;({x>0})$的最小值為3,當(dāng)且僅當(dāng)x=2時(shí)取到此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成.小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(Ⅰ)試寫出f(1),f(2),f(3),f(4),f(5)的值;
(Ⅱ)利用合情推理中的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式;并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案