3.若函數(shù)f(x)=$\sqrt{(a-2){x^2}+2(a-2)x+4}$的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

分析 由題意得(a-2)x2+2(a-2)x+4≥0恒成立,對(duì)a分類討論后,由恒成立問題、一元二次函數(shù)的圖象與性質(zhì)列出不等式,求出實(shí)數(shù)a的取值范圍.

解答 解:由題意得,(a-2)x2+2(a-2)x+4≥0恒成立,
當(dāng)a-2=0,即a=2時(shí),則4≥0恒成立;
當(dāng)a-2≠0,即a≠2時(shí),
則$\left\{\begin{array}{l}{a-2>0}\\{△=4(a-2)^{2}-4(a-2)×4≤0}\end{array}\right.$,解得2<a≤6,
綜上可得,實(shí)數(shù)a的取值范圍是[2,6].

點(diǎn)評(píng) 本題考查函數(shù)的定義域,一元二次函數(shù)的圖象與性質(zhì),以及恒成立問題,考查轉(zhuǎn)化思想、分類討論思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{(x+a)^2}$.
(1)若曲線y=f(x)在點(diǎn)x=0處的切線斜率為1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x≥0時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.定義2×2矩陣$[\begin{array}{l}{a_1}\\{a_3}\end{array}\right.\left.\begin{array}{l}{a_2}\\{a_4}\end{array}]={a_1}{a_4}-{a_2}{a_3}$,若$f(x)=[{\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}}]$,則f(x)( 。
A..圖象關(guān)于(π,0)中心對(duì)稱B.圖象關(guān)于直線$x=\frac{π}{2}$對(duì)稱
C.在區(qū)間$[-\frac{π}{6},0]$上單調(diào)遞增D.周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,已知圓C的方程為x2+y2=1,P是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1上的一點(diǎn),過P作圓的兩條切線,切點(diǎn)為A,B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍為( 。
A.[0,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.[1,$\frac{3}{2}$]D.[$\frac{3}{2}$,$\frac{9}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在平行四邊形ABCD中,|$\overrightarrow{AB}$|=8,|$\overrightarrow{AD}$|=6,N為DC的中點(diǎn),$\overrightarrow{BM}$=2$\overrightarrow{MC}$,則$\overrightarrow{AM}$•$\overrightarrow{NM}$=( 。
A.48B.36C.24D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}x=2+\sqrt{7}cosα\\ y=\sqrt{7}sinα\end{array}\right.$(α為參數(shù)).以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=8cosθ,直線l的極坐標(biāo)方程為$θ=\frac{π}{3}(ρ∈R)$.
(Ⅰ)求曲線C1的極坐標(biāo)方程與直線l的直角坐標(biāo)方程;
(Ⅱ)若直線l與C1,C2在第一象限分別交于A,B兩點(diǎn),P為C2上的動(dòng)點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖網(wǎng)格紙上的小正方形邊長(zhǎng)為1,粗線是一個(gè)三棱錐的三視圖,則該三棱錐的外接球表面積為( 。
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合M={1,2,3},N={2,3,4},則M∪N={1,2,3,4}.

查看答案和解析>>

同步練習(xí)冊(cè)答案