已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
(1)(2)。
解析試題分析:(1)∵ 2分
原點到直線AB:的距離, 。捶
故所求雙曲線方程為 6分
(2)把中消去y,整理得 . 8分
設,則
因為以CD為直徑的圓經(jīng)過雙曲線的左焦點F,所以 , 10分
可得 把代入,
解得: 11分
解,得,滿足, 12分
考點:雙曲線的標準方程;雙曲線的簡單性質(zhì);直線與雙曲線的綜合應用。
點評:直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學思想方法.
科目:高中數(shù)學 來源: 題型:解答題
設圓的極坐標方程為,以極點為直角坐標系的原點,極軸為軸正半軸,兩坐標系長度單位一致,建立平面直角坐標系.過圓上的一點作平行于軸的直線,設與軸交于點,向量.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)設點 ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的長軸長為,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(1)求橢圓及動圓圓心軌跡的方程;
(2) 在曲線上有兩點、,橢圓上有兩點、,滿足與共線,與共線,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓C以拋物線的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若分別為橢圓的左右焦點,求的角平分線所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點。
(1)求橢圓的方程;
(2)若坐標原點到直線的距離為,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點A、B,若,則當△OAB的面積最大時,求橢圓的方程。
(2)設M,N為橢圓上的兩個動點,,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直接坐標系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線L的位置關系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com