已知點(diǎn)M(a,b)在由不等式組
x≥0
y≥0
x+y≤2
確定的平面區(qū)域內(nèi),則點(diǎn)N(a+b,a-b)所在平面區(qū)域的面積是( 。
A.1B.2C.4D.8
令s=x+y,t=x-y,則P(x+y,x-y)為P(s,t)
由s=x+y,t=x-y
可得 2x=s+t,2y=s-t
因?yàn)閤,y是正數(shù),且x+y≤2
s+t≥0
s-t≥0
s≤2

在直角坐標(biāo)系上畫(huà)出P(s,t) s橫坐標(biāo),t縱坐標(biāo),
即可得知面積為4
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={-1,2,3}和Q={-2,1,2},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-6≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知不等式組
x≥0
y≥0
y≤x+1
y≤3-x
表示的平面區(qū)域?yàn)镈,則區(qū)域D的面積為(  )
A.1B.
3
2
C.
5
2
D.
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)平面上,不等式組
y≤x+2
y≥0
0≤x≤t
所表示的平面區(qū)域的面積為
5
2
,則t的值為( 。
A.-
3
3
B.-5或1C.1D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知z=2x+y,x,y滿(mǎn)足
y≥x
x+y≤2
x≥m
,且z的最大值是最小值的4倍,則m的值是( 。
A.
1
4
B.
1
5
C.
1
6
D.
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若實(shí)數(shù)x,y滿(mǎn)足
x+y-2≥0
x≤0
y≤5
,則z=x-y的最大值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知α,β是方程x2+ax+2b=0的兩根,且α∈[0,1],β∈[1,2],a∈R,b∈R,求
b-3
a-3
的最大值與最小值之和為(  )
A.
13
12
B.
3
2
C.
1
2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

實(shí)數(shù)x,y滿(mǎn)足不等式組
y≤2
x≥1
y≥kx-3k+2
所確定的可行域內(nèi),若目標(biāo)函數(shù)z=-x+y僅在點(diǎn)(3,2)取得最大值,則實(shí)數(shù)k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某電視機(jī)廠計(jì)劃在下一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)兩種型號(hào)電視機(jī),每臺(tái)A型或B型電視機(jī)所得利潤(rùn)分別為6和4個(gè)單位,而生產(chǎn)一臺(tái)A型或B型電視機(jī)所耗原料分別為2和3個(gè)單位;所需工時(shí)分別為4和2個(gè)單位,如果允許使用的原料為100單位,工時(shí)為120單位,且A或B型電視和產(chǎn)量分別不低于5臺(tái)和10臺(tái),應(yīng)當(dāng)生產(chǎn)每種類(lèi)型電視機(jī)多少臺(tái),才能使利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案