【題目】某高校在2009年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
(1)請先求出頻率分布表中①、②位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A考官進行面試,求:第4組至少有一名學生被考官A面試的概率?
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | ① | 0.350 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185) | 10 | 0.100 |
合計 | 100 | 1.00 |
【答案】
(1)解:由題可知,第2組的頻數(shù)為0.35×100=35人,
第3組的頻率為 =0.300,頻率分布直方圖如圖所示;
(2)解:因為第3、4、5組共有60名學生,
所以利用分層抽樣在60名學生中抽取6名學生,每組分別為:
第3組: ×6=3人;第4組: ×6=2人;
第5組: ×6=1人.
所以第3、4、5組分別抽取3人、2人、1人.
(3)解:設(shè)第3組的3位同學為A1、A2、A3,
第4組的2位同學為B1、B2,第5組的1位同學為C,
則從六位同學中抽兩位同學有15種可能,具體如下:
A1A2,A1A3,A1B1,A1B2,A1C,A2A3,
A2B1,A2B2,A2C,A3B1,A3B2,A3C,B1B2,B1C,B2C;
其中第4組的2位同學B1,B2至少有一位同學入選的有:
A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,B1C,B2C共9種可能;
所以其中第4組的2位同學B1、B2至少有一位同學入選的概率為
P= = .
【解析】(1)根據(jù)頻率、頻數(shù)與樣本容量的關(guān)系,求出對應(yīng)的數(shù)值,畫出頻率分布直方圖;(2)利用分層抽樣原理,求出各小組應(yīng)抽取的人數(shù);(3)利用列舉法求出基本事件數(shù),計算對應(yīng)的概率值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是平行四邊形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,點F是PB的中點,點E在邊BC上移動.
(1)證明:當點E在邊BC上移動時,總有EF⊥AF;
(2)當CE等于何值時,PA與平面PDE所成角的大小為45°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若|f(x)|≥ax,則a的取值范圍是( )
A.(﹣∞,0]
B.(﹣∞,1]
C.[﹣2,1]
D.[﹣2,0]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線E的中心為原點,P(3,0)是E的焦點,過P的直線l與E相交于A,B兩點,且AB的中點為N(﹣12,﹣15),則E的方程式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù) 的圖象,只需將函數(shù)y=cos2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了促進學生的全面發(fā)展,鄭州市某中學重視學生社團文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”,“演講社”三個金牌社團中抽取6人組成社團管理小組,有關(guān)數(shù)據(jù)見表(單位:人):
社團名稱 | 成員人數(shù) | 抽取人數(shù) |
話劇社 | 50 | a |
創(chuàng)客社 | 150 | b |
演講社 | 100 | c |
(1)求a,b,c的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔任管理小組組長,求這2人來自不同社團的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四名選手 A、B、C、D 參加射擊、拋球、走獨木橋三項比賽,每個選手在各項比賽中獲得合格、不合格機會相等,比賽結(jié)束,評委們會根據(jù)選手表現(xiàn)給每位選手評定比賽成績,根據(jù)比賽成績,對前兩名進行獎勵.
(1)選手 D 至少獲得兩個合格的概率;
(2)選手 C、D 只有一人得到獎勵的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com