菱形邊長為,角,沿折起,使二面角 為,則折起后、之間的距離是      

 

【答案】

【解析】

試題分析:作的中點,連接,所以,因為二面角 為,所以折起后、之間的距離是.

考點:本小題主要考查二面角的應(yīng)用,空間兩點的距離.

點評:解決此類折疊問題,要弄清楚折疊前后的變量和不變量.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

B=
π
3
邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角B-AC-D.若θ∈[
π
3
,
3
]
,M,N分別為AC,BD的中點,則下列說法中正確的有
 

①AC⊥MN   ②DM與平面ABC所成角為θ   ③線段MN的最大值是
3
4
,最小值是
3
4
    ④當時θ=
π
2
時,BC與AD所成角等于
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將銳角A為60°,邊長為a的菱形ABCD沿BD折成二面角,使A與C之間的距離為
3
2
a
,則二面角A-BD-C的平面角的大小為
60°
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知菱形ABCD的邊長為2,將其沿對角線BD折成直二面角A-BD-C.
(1)證明:AC⊥BD;
(2)若二面角A-BC-D的平面角的正切值為2,求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別在邊CD,CB上,點E與點C,點D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED
(1)求證:BD⊥平面POA
(2)設(shè)AO∩BD=H,當O為CH中點時,若點Q滿足
AQ
=
QP
,求直線OQ與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案