分析:(Ⅰ)(1)利用圖中表格的數(shù)據(jù)進(jìn)行判斷,然后利用定義法進(jìn)行證明;
(2)把a(bǔ)=1代入f(x),然后對(duì)其進(jìn)行求導(dǎo),求出其單調(diào)區(qū)間,根據(jù)圖象求出其最值;
(Ⅱ)(1)已知函數(shù)
f(x)=,(x∈R),f(-x)=-f(x),從而證明;
(2)根據(jù)奇函數(shù)的性質(zhì),畫(huà)出草圖,然后求出其值域.
(Ⅲ)把a(bǔ)=-1,代入f(x),對(duì)其求導(dǎo)研究函數(shù)的單調(diào)性,利用f(x)的奇函數(shù),對(duì)其進(jìn)行求解;
解答:解:(Ⅰ)(1)從圖中數(shù)據(jù)可以看出:當(dāng)0<x<1時(shí),y隨x的增大而增大,當(dāng)x≥1時(shí),y隨x的增大而減小,
∴函數(shù)f(x),在[0,+∞)上的單調(diào)增區(qū)間為[0,1],單調(diào)減區(qū)間為[1,+∞),
現(xiàn)在對(duì)(1,+∞)上為減函數(shù)進(jìn)行證明;1<x
1<x
2,
∴f(x)在[0,1]上為增函數(shù),在[1,+∞]上為減函數(shù)
現(xiàn)在對(duì)(1,+∞)上為減函數(shù)進(jìn)行證明;1<x
1<x
2,
f(x
1)-f(x
2)=
-
=
4[(x2-x1)(x1x2-1)] |
( +1)(+1) |
,
∴x
2-x
1>0,x
1x
2-1>0,
∴f(x
1)-f(x
2)>0,f(x
1)>f(x
2)
∴f(x)在(1,+∞)上為減函數(shù),即證;
(2)∵a=1,∴f(x)=
,∴f′(x)=
,
∴當(dāng)-1<x<1時(shí),f′(x)>0,f(x)為增函數(shù);
當(dāng)x>1或x<-1時(shí),f′(x)<0,f(x)為減函數(shù);
由上可知,f(x)在x=1點(diǎn)取極大值,∵x<0,∴f(x)<0,
∴f(x)在x=1處取最大值,f
max(x)=f(1)=2;
(Ⅱ)(1)∵a=1,∴f(x)=
,
f(-x)=
=-f(x),f(x)為奇函數(shù);
(2)∵當(dāng)-1<x<1時(shí),f′(x)>0,f(x)為增函數(shù);
當(dāng)x>1或x<-1時(shí),f′(x)<0,f(x)為減函數(shù);
∵x<0,∴f(x)<0,畫(huà)出f(x)的草圖:
可得f(x)≤2,f(x)值域?yàn)椋篬-2,2]
(Ⅲ)∵a=-1,f(x)的定義域?yàn)椋?1,1),
∴f(x)=
,f′(x)=-
-<0,f(x)為減函數(shù),
∴f(-x)=-f(x),f(x)為奇函數(shù),
∴
f(4-3x)+f(x-)>0,
f(4-3x)>-f(x-
),
∴f(4-3x)>f(
-x),∵f(x)為減函數(shù),
∴-1<4-3x<
-x<1,
∴
>x>
∴不等式解集為:(
,
)