已知△ABC的三邊a,b,c滿足a:b:c=3:5:7,則△ABC中的最大內(nèi)角為( 。
A、60°B、90°
C、120°D、150°
考點:余弦定理
專題:解三角形
分析:由已知比例式設(shè)出三角形三角形,且得到C為最大角,利用余弦定理表示出cosC,把設(shè)出的三邊代入求出cosC的值,即可確定出C的度數(shù).
解答: 解:根據(jù)題意設(shè)a=3k,b=5k,c=7k,且C為最大角,
由余弦定理得:cosC=
a2+b2-c2
2ab
=
9k2+25k2-49k2
30k2
=-
1
2
,
則△ABC最大內(nèi)角C=120°,
故選:C.
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)a,b∈R,則“a>b”是“(a-1)|a|>(b-1)|b|”成立的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓C1:(x-1)+(y-1)2=4與C2:x2+(y-a)2=1相離,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2-4y=0的圓心坐標和半徑分別為(  )
A、(0,2),2
B、(0,-2),2
C、(-2,0),2
D、(2,0),2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪函數(shù)f(x)的圖象經(jīng)過點A(4,
1
16
),則該函數(shù)的解析式為( 。
A、f(x)=x2
B、f(x)=x-2
C、f(x)=x4
D、f(x)=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα-cosα=
2
,α∈(0,π),則tanα=( 。
A、1
B、-1
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
2x-2
+
1
lg(x-1)
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

比較大。簂og56
 
log32(按大小關(guān)系填“<”或“>”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導數(shù),f″(x)是函數(shù)f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”,某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.給定函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據(jù)上面探究結(jié)果,解答以下問題:
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心坐標為
 
;
(2)計算f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
2014
2015
)=
 

查看答案和解析>>

同步練習冊答案