6.如圖是一個(gè)簡(jiǎn)單幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 由三視圖可知:該幾何體為四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為1的正方形,PA⊥底面ABCD,PA=1.

解答 解:由三視圖可知:該幾何體為四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為1的正方形,
PA⊥底面ABCD,PA=1.
∴該幾何體的體積=$\frac{1}{3}×\frac{1}{2}×{1}^{2}×1$=$\frac{1}{6}$.
故選:A.

點(diǎn)評(píng) 本題考查了四棱錐的三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(1,1),$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$-λ$\overrightarrow$,如果$\overrightarrow{m}$⊥$\overrightarrow{n}$,那么實(shí)數(shù)λ=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,a=log2$\frac{1}{3}$,b=log4$\frac{1}{5}$,c=${2^{\frac{3}{2}}}$,則f(a),f(b),f(c)滿足( 。
A.f(a)<f(b)<f(c)B.f(b)<f(a)<f(c)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3、S9、S6成等差數(shù)列,則下列說(shuō)法錯(cuò)誤的是( 。
A.a3、a6、a9成等比數(shù)列B.a3、a6、a9成等差數(shù)列
C.S2、S8、S5成等比數(shù)列D.S2、S8、S5成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)g(x)=2x3+(2a+1)x+$\frac{1}{2}$,若曲線y=g(x)與x軸相切,則a的值為$-\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且$\frac{S_n}{T_n}=\frac{n-9}{n+3}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線l1:ax+y-a+1=0,直線l1:4x+ay-2=0,則“a=±2”是“l(fā)1∥l2”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知{an}為等比數(shù)列,Sn為其前n項(xiàng)和,a2=2,S8=0,則S99=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)?shù)列{an}滿足a1=1,且對(duì)于任意的n∈N*都有an+1=an+a1+n,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于(  )
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

同步練習(xí)冊(cè)答案