【題目】已知函數(shù).

(1)求的值域;

(2)設(shè)函數(shù),若對任意,總存在,使得

立,求實數(shù)的取值范圍.

【答案】(1)(2).

【解析】

試題分析:(1)分段函數(shù)的值域為各段函數(shù)的值域取交集;(2)因為對任意的,總存在,使得,即函數(shù)值域中的任一個值,總有一個在的值域中的值與之對應(yīng),即的值域是的值域的子集,因為是一個一次類型的函數(shù),對參數(shù)分別討論可求出值域,進(jìn)一步求出的范圍.

試題解析:解:(1)當(dāng)時,由定義易證函數(shù)上是減函數(shù),

此時

當(dāng)時,;

當(dāng)時,上是增函數(shù),此時.

函數(shù)的值域為.

(2),,對于任意,,

不存在,使得成立.

,上是增函數(shù),,任給,,若存在,使得成立,

,.

上是減函數(shù),,若存在,使得成立,則,,.

綜上,實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關(guān)系:,若不建隔熱層,每年能源消耗費用為8萬元,設(shè)為隔熱層建造費用與20年的能源消耗費用之和.

(1)求的值及的表達(dá)式;

(2)隔熱層修建多厚時,總費用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位每天的用電量當(dāng)天最高氣溫之間具有線性相關(guān)關(guān)系,下表是該單位隨機統(tǒng)計4天的用電量與當(dāng)天最高氣溫的數(shù)據(jù).

最高氣溫()

26

29

31

34

用電量 (度)

22

26

34

38

根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);

預(yù)測某天最高氣溫為33,該單位當(dāng)天的用電量(精確到1度).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 表示導(dǎo)函數(shù).

(1)當(dāng)時,求函數(shù)在點處的切線方程;

(2)討論函數(shù)的單調(diào)區(qū)間;

(3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

(1)求證: 平面

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為

(1)若為等邊三角形,求橢圓的方程;

(2)若橢圓的短軸為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a=(1,2),b=(-2,n),ab的夾角是45°.

(1) 求b;

(2) cb同向,且aca垂直,求向量c的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組檢測數(shù)據(jù))如下表所示:

試銷價格

(元)

4

5

6

7

9

產(chǎn)品銷量

(件)

84

83

80

75

68

已知變量具有線性負(fù)相關(guān)關(guān)系,且,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得其回歸直線方程分別為:甲,乙,丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的( ).

1)試判斷誰的計算結(jié)果正確?并求出的值;

2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是理想數(shù)據(jù),現(xiàn)從檢測數(shù)據(jù)中隨機抽取2個,理想數(shù)據(jù)的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案