如圖,正方形ABCD中,E,F(xiàn)分別是BC,CD的中點(diǎn),H是EF的中點(diǎn),現(xiàn)在沿AE,AF及EF把這個(gè)正方形折成一個(gè)四面體,使B,C,D三點(diǎn)重合于G點(diǎn),則在四面體A-EFG中必有


  1. A.
    AG⊥平面EFG
  2. B.
    AH⊥平面EFG
  3. C.
    GF⊥平面AEF
  4. D.
    GH⊥平面AEF
A
分析:根據(jù)題意,在折疊過(guò)程中,始終有AB⊥BE,AD⊥DF,即AG⊥GE,AG⊥GF,由線面垂直的判定定理,易得AG⊥平面EFG,分析四個(gè)答案,即可給出正確的選擇.
解答:∵在折疊過(guò)程中,
始終有AB⊥BE,AD⊥DF,
即AG⊥GE,AG⊥GF,
所以AG⊥平面EFG.
故選A.
點(diǎn)評(píng):線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問(wèn)題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說(shuō),根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、如圖把正方形ABCD沿對(duì)角線BD折成直二面角,對(duì)于下面結(jié)論:
①AC⊥BD;
②CD⊥平面ABC;
③AB與BC成60°角;
④AB與平面BCD成45°角.
則其中正確的結(jié)論的序號(hào)為
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD、ABEF的邊長(zhǎng)都是1,而且平面ABCD、ABEF互相垂直,點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng),若CM=BN=a(0<a<
2
),則MN的長(zhǎng)的最小值為 (  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求證:AB⊥平面ADE;
(II)(理)在線段BE上存在點(diǎn)M,使得直線AM與平面EAD所成角的正弦值為
6
3
,試確定點(diǎn)M的位置.
(文)若AD=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州二模)如圖,正方形ABCD與正方形CDEF所成的二面角為60°,則直線EC與直線AD所成的角的余弦值為
2
4
2
4

查看答案和解析>>

同步練習(xí)冊(cè)答案