【題目】在平行六面體ABCD﹣A1B1C1D1中,所有棱長(zhǎng)均為2,∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.
(1)求證:A1C⊥B1D1;
(2)求對(duì)角線AC1的長(zhǎng);
(3)求二面角C1﹣AB1﹣D1的平面角的余弦值的大小.
【答案】(1)證明見(jiàn)詳解;(2);(3).
【解析】
(1)根據(jù)題意,先證明B1D1⊥平面A1ACC1,再根據(jù)線面垂直推證線線垂直即可;
(2)由平面推證出為直角三角形,再用勾股定理求解即可;
(3)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再根據(jù)向量夾角的求解公式,即可求得.
(1)證明:∵在平行六面體ABCD﹣A1B1C1D1中,所有棱長(zhǎng)均為2,
∴AD1=AB1=2,連結(jié)A1C1,B1D1,交于點(diǎn)O,連結(jié)AO,如下圖所示:
∵∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.∴AO⊥B1D1,
∵四邊形A1B1C1D1為正方形,∴B1D1⊥A1C1,
∴B1D1⊥平面A1ACC1,
∵A1C平面A1ACC1,
∴B1D1⊥A1C.
(2)在△AB1D1中,AO
又,AA1=2,
∴,∴AO⊥A1O,
∵AO⊥B1D1,∴AO⊥平面A1B1C1D1,
∴AO⊥OC1,
∴AC12.
(3)由(2)知AO⊥平面A1B1C1D1,
以點(diǎn)O為原點(diǎn),OA1為x軸,OB1為y軸,OA為z軸,建立空間直角坐標(biāo)系,
A(0,0,),B1(0,,0),C1(,0,0),
(0,),(,0,),
設(shè)平面AB1C1的法向量
則,
取x=1,得(1,﹣1,﹣1),
平面AB1D1的法向量(1,0,0),
設(shè)二面角C1﹣AB1﹣D1的平面角為θ,
則cosθ.
∴二面角C1﹣AB1﹣D1的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面是平行四邊形, 點(diǎn),分別在棱,上,且,.
(1)求證:平面;
(2)若,,,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)求的值;
(2)求證:;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過(guò)軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x﹣6|(x∈R),記f(x)的最小值為c.
(1)求c的值;
(2)若實(shí)數(shù)ab滿足a>0,b>0,a+b=c,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個(gè)點(diǎn),,并修建兩段直線型道路,,規(guī)劃要求:線段,上的所有點(diǎn)到點(diǎn)的距離均不小于圓的半徑.已知點(diǎn),到直線的距離分別為和(,為垂足),測(cè)得,,(單位:百米).
(1)若道路與橋垂直,求道路的長(zhǎng);
(2)在規(guī)劃要求下,和中能否有一個(gè)點(diǎn)選在處?并說(shuō)明理由;
(3)在規(guī)劃要求下,若道路和的長(zhǎng)度均為(單位:百米),求當(dāng)最小時(shí),、兩點(diǎn)間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com