【題目】已知函數(shù)f(x)=lnx+ax2-x(x>0,a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)a≤0時(shí),曲線(xiàn)y=f(x)上任意一點(diǎn)處的切線(xiàn)與該曲線(xiàn)只有一個(gè)公共點(diǎn).
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍.求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)根據(jù)函數(shù)的單調(diào)性以及a的范圍證明即可.
(Ⅰ)f′(x)=+2ax-1=(x>0),
設(shè)g(x)=2ax2-x+1(x>0),
(1)當(dāng)0<a<時(shí),g(x)在(0,),(,+∞)上大于零,
在(,)上小于零,
所以f(x)在(0,),(,+∞)上遞增,
在(,)上遞減,
(2)當(dāng)a≥時(shí),g(x)≥0(當(dāng)且僅當(dāng)a=,x=2時(shí)g(x)=0),
所以f(x)在(0,+∞)上單調(diào)遞增,
(3)當(dāng)a=0時(shí),g(x)在(0,1)上大于零,在(1,+∞)上小于零,
所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減,
(4)當(dāng)a<0時(shí),g(x)在(0,)上大于零,在(,+∞)上小于零,
所以f(x)在(0,)上遞增,在(,+∞)上遞減;
(Ⅱ)曲線(xiàn)y=f(x)在點(diǎn)(t,f(t))處的曲線(xiàn)方程為:
y=(+2at-1)(x-t)+lnt+at2-t,
曲線(xiàn)方程和y=f(x)聯(lián)立可得:
lnx+ax2-(+2at)x-lnt+at2+1=0,
設(shè)h(x)=lnx+ax2-(+2at)x-lnt+at2+1(x>0),
h′(x)=,
當(dāng)a≤0時(shí),在(0,t)h′(x)>0,在(t,+∞)h′(x)<0,
故h(x)在(0,t)遞增,在(t,+∞)遞減,
又h(t)=0,
故h(x)只有唯一的零點(diǎn)t,
即切線(xiàn)與該曲線(xiàn)只有1個(gè)公共點(diǎn)(t,f(t)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,,公差為.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)是否存在,使成立?若存在,試找出所有滿(mǎn)足條件的,的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
(1)任意兩個(gè)復(fù)數(shù)都不能比較大。唬2)為實(shí)數(shù)為實(shí)數(shù);(3)虛軸上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)都是純虛數(shù);(4)復(fù)數(shù)集與復(fù)平面內(nèi)的所有點(diǎn)所成的集合是一一對(duì)應(yīng)的.
其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,是的中點(diǎn).
(I)求證:平面平面;
(II)若異面直線(xiàn)與所成角為,求平面與平面夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(2,0),B(2,0),焦點(diǎn)在x軸上,離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)D為x軸上一點(diǎn),過(guò)D作x軸的垂線(xiàn)交橢圓C于不同的兩點(diǎn)M,N,過(guò)D作AM的垂線(xiàn)交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解一款電冰箱的使用時(shí)間和市民對(duì)這款電冰箱的購(gòu)買(mǎi)意愿,研究人員對(duì)該款電冰箱進(jìn)行了相應(yīng)的抽樣調(diào)查,得到數(shù)據(jù)的統(tǒng)計(jì)圖表如下:
購(gòu)買(mǎi)意愿市民年齡 | 不愿意購(gòu)買(mǎi)該款電冰箱 | 愿意購(gòu)買(mǎi)該款電冰箱 | 總計(jì) |
40歲以上 | 600 | 800 | |
40歲以下 | 400 | ||
總計(jì) | 800 |
(1)根據(jù)圖中的數(shù)據(jù),估計(jì)該款電冰箱使用時(shí)間的中位數(shù);
(2)完善表中數(shù)據(jù),并據(jù)此判斷是否有的把握認(rèn)為“愿意購(gòu)買(mǎi)該款電冰箱“與“市民年齡”有關(guān);
(3)用頻率估計(jì)概率,若在該電冰箱的生產(chǎn)線(xiàn)上隨機(jī)抽取3臺(tái),記其中使用時(shí)間不低于4年的電冰箱的臺(tái)數(shù)為,求的期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】住在同一城市的甲、乙兩位合伙人,約定在當(dāng)天下午4:20-5:00間在某個(gè)咖啡館相見(jiàn)商談合作事宜,他們約好當(dāng)其中一人先到后最多等對(duì)方10分鐘,若等不到則可以離去,則這兩人能相見(jiàn)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技創(chuàng)新公司在第一年年初購(gòu)買(mǎi)了一臺(tái)價(jià)值昂貴的設(shè)備,該設(shè)備的第1年的維護(hù)費(fèi)支出為20萬(wàn)元,從第2年到第6年,每年的維修費(fèi)增加4萬(wàn)元,從第7年開(kāi)始,每年維修費(fèi)為上一年的125%.
(1)求第n年該設(shè)備的維修費(fèi)的表達(dá)式;
(2)設(shè),若萬(wàn)元,則該設(shè)備繼續(xù)使用,否則須在第n年對(duì)設(shè)備更新,求在第幾年必須對(duì)該設(shè)備進(jìn)行更新?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5,該紙片上的等邊三角形ABC的中心為O,點(diǎn)D,E,F為圓O上的點(diǎn),,,分別是以BC,CA,AB為底邊的等腰三角形.沿虛線(xiàn)剪開(kāi)后,分別以BC,CA,AB為折痕折起,,,使得D,E,F重合于P,得到三棱錐.
(1)當(dāng)時(shí),求三棱錐的體積;
(2)當(dāng)的邊長(zhǎng)變化時(shí),三棱錐的側(cè)面和底面所成二面角為,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com