設(shè)m是給定的實(shí)數(shù),函數(shù)f(x)=x-ln(x+m)的定義域?yàn)镈.
(Ⅰ)求m的取值范圍,使得f(x)≥0對(duì)任意的x∈D均成立;
(Ⅱ)求證:對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.
【答案】分析:(Ⅰ)由題意知定義域D=(-m,+∞),由f(x)=x-ln(x+m),x∈(-m,+∞),知=,由此能求出當(dāng)m≤1時(shí),f(x)≥0.
(Ⅱ)當(dāng)m>1時(shí),f(1-m)=1-m<0,故函數(shù)f(x)=x-ln(x+m)在(-m,-m+1]上為減函數(shù),由m>1知-m+e-m∈(-m,-m+1],f(-m+e-m)=-m+e-m-ln(-m+e-m+m)=e-m>0,知函數(shù)f(x)在(e-m-m,1-m)內(nèi)有唯一零點(diǎn),從而可知函數(shù)f(x)在(-m,-m+1]內(nèi)有唯一零點(diǎn),由此入手能夠證明對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.
解答:解:(Ⅰ)由題意知定義域D=(-m,+∞),∵f(x)=x-ln(x+m),x∈(-m,+∞),
=,
令f′(x)=0,得x=1-m.
當(dāng)x∈(-m,1-m)時(shí),f′(x)<0,f(x)為減函數(shù),f(x)>f(1-m);
當(dāng)x∈(1-m,+∞)時(shí),f′(x)>0,f(x)為增函數(shù),f(x)>f(1-m);
故函數(shù)f(x)在定義域D內(nèi)的最小值為f(1-m)=1-m,即f(x)≥f(1-m)=1-m,
故當(dāng)m≤1時(shí),f(x)≥0.
(Ⅱ)證明:由(Ⅰ)知,當(dāng)m>1時(shí),f(1-m)=1-m<0,
函數(shù)f(x)=x-ln(x+m)在(-m,-m+1]上為減函數(shù),
又由m>1知-m+e-m∈(-m,-m+1],
且由f(-m+e-m)=-m+e-m-ln(-m+e-m+m)=e-m>0,
知函數(shù)f(x)在(e-m-m,1-m)內(nèi)有唯一零點(diǎn),
從而可知函數(shù)f(x)在(-m,-m+1]內(nèi)有唯一零點(diǎn),
令g(x)=e2x-3x(x>1),
則g′(x)=2e2x-3,
當(dāng)x>1時(shí),g′(x)=2e2x-3>2e2-3>0,
故函數(shù)g(x)在區(qū)間(1,+∞)上遞增.
于是,g(x)>g(1)=e2-3>0,
從而可知,當(dāng)m>1時(shí),
f(e2m-m)=e2m-3m>0.
函數(shù)f(x)=x-ln(x+m)在(-m+1,-m+e2m]上遞增,
∵m>1,∴-m+e2m∈(-m+1,-m+e2m],
且由f(-m+e2m)=-m+e2m-ln(-m+e2m+m)=e2m-3m>0,
知函數(shù)f(x)在(-m+1,-m+e2m]內(nèi)有唯一零點(diǎn),
從而可知函數(shù)f(x)在(-m+1,+∞)內(nèi)有唯一零點(diǎn).
綜上所述,對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.
點(diǎn)評(píng):本題考查函數(shù)與方程的綜合應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an中,a1=1,a2=a-1(a≠1,a為實(shí)常數(shù)),前n項(xiàng)和Sn恒為正值,且當(dāng)n≥2時(shí),
1
Sn
=
1
an
-
1
an+1

(1)求證:數(shù)列Sn是等比數(shù)列;
(2)設(shè)an與an+2的等差中項(xiàng)為A,比較A與an+1的大。
(3)設(shè)m是給定的正整數(shù),a=2.現(xiàn)按如下方法構(gòu)造項(xiàng)數(shù)為2m有窮數(shù)列bn:當(dāng)k=m+1,m+2,…,2m時(shí),bk=ak•ak+1;當(dāng)k=1,2,…,m時(shí),bk=b2m-k+1.求數(shù)列{bn}的前n項(xiàng)和為Tn(n≤2m,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m、t為實(shí)數(shù),函數(shù)f(x)=
mx+t
x2+1
,f(x)的圖象在點(diǎn)M(0,f(0))處的切線的斜率為1.
(1)求實(shí)數(shù)m的值;
(2)若對(duì)于任意x∈[-1,2],總存在t,使得不等式f(x)≤2t成立,求實(shí)數(shù)t的取值范圍;設(shè)方程x2+2tx-1=0的兩個(gè)實(shí)數(shù)根為a,b(a<b),若對(duì)于任意x∈[a,b],總存在x1、x2∈[a,b],使得f(x1)≤f(x)≤f(x2)恒成立,記g(t)=f(x2)-f(x1),當(dāng)g(t)=
5
時(shí),求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西安模擬)設(shè)m是給定的實(shí)數(shù),函數(shù)f(x)=x-ln(x+m)的定義域?yàn)镈.
(Ⅰ)求m的取值范圍,使得f(x)≥0對(duì)任意的x∈D均成立;
(Ⅱ)求證:對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)m是給定的實(shí)數(shù),函數(shù)f(x)=x-ln(x+m)的定義域?yàn)镈.
(Ⅰ)求m的取值范圍,使得f(x)≥0對(duì)任意的x∈D均成立;
(Ⅱ)求證:對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案