如圖,橢圓
的四個頂點
構成的四邊形為菱形,若菱形
的內(nèi)切圓恰好過焦點,則橢圓的離心率是
試題分析:連接上頂點
與右頂點
的直線為
,圓的方程為
,由直線與圓相切可得
,整理的
即
點評:求離心率關鍵是找到關于
的齊次方程或不等式
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)橢圓
:
的左、右焦點分別為
,焦距為2,,過
作垂直于橢圓長軸的弦長
為3.
(Ⅰ)
求橢圓
的方程;
(Ⅱ)若過
的直線l交橢圓于
兩點.并判斷是否存在直線l使得
的夾角為鈍角,若存在,求出l的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
過點
.
(I)求拋物線的方程;
(II)已知圓心在
軸上的圓
過點
,且圓
在點
的切線恰是拋物線在點
的切線,求圓
的方程;
(Ⅲ)如圖,點
為
軸上一點,點
是點
關于原點的對稱點,過點
作一條直線與拋物線交于
兩點,若
,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設雙曲線
的右焦點為
,右準線
與兩條漸近線交于
兩點,如果
是等邊三角形,則雙曲線的離心率
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(10分)過直角坐標平面
中的拋物線
,直線
過焦點
且與拋物線相交于
,
兩點.
⑴當直線的傾斜角為
時,用
表示
的長度;
⑵當
且三角形
的面積為4時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
一動圓圓心在拋物線
上,且動圓恒與直線
相切,則動圓必過定點
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在平面直角坐標系
中,雙曲線
的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
上一點
到焦點的距離為1,則點
的縱坐標是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的離心率為
,且它的一條準線與拋物
線
的準線重合,則此雙曲線的方程是( )
查看答案和解析>>