【題目】已知函數(shù)f(x)=x3+x+1,若對(duì)任意的x,都有f(x2+a)+f(ax)>2,則實(shí)數(shù)a的取值范圍是 .
【答案】0<a<4
【解析】解:構(gòu)造函數(shù)g(x)=f(x)﹣1=x3+x,則函數(shù)是奇函數(shù),在R上單調(diào)遞增,
f(x2+a)+f(ax)>2,等價(jià)于g(x2+a)+g(ax)>0,
∴x2+a>﹣ax,
∴x2+ax+a>0,
∴△=a2﹣4a<0
∴0<a<4,
所以答案是0<a<4.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題α:m2﹣4m+3≤0,命題β:m2﹣6m+8<0.若α、β中有且只有一個(gè)是真命題,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x) 滿足f(x﹣2)=﹣f(x),則下列結(jié)論正確的是( )
A.f(﹣2012)>f(2014)
B.f(﹣2012)<f(2014)
C.f(﹣2012)=f(2014)
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從0,1,2,3,4,5共6個(gè)數(shù)中任取三個(gè)組成的無(wú)重復(fù)數(shù)字的三位數(shù),其中能被5整除的有( )
A.40個(gè)
B.36個(gè)
C.28個(gè)
D.60個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在復(fù)平面內(nèi),復(fù)數(shù)﹣2+3i對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分析法是從要證的不等式出發(fā),尋求使它成立的( )
A.充分條件
B.必要條件
C.充要條件
D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),若任意的x≥0,都有f(x+2)=﹣f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x﹣1,則f(﹣2017)+f(2018)=( 。
A.1
B.﹣1
C.0
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com