已知正數(shù)x,y滿足
2
x
+
1
y
=1
,則x+2y的最小值為(  )
分析:先把x+2y轉(zhuǎn)化成x+2y=(x+2y)•(
2
x
+
1
y
)展開后利用均值不等式即可求得答案,注意等號成立的條件.
解答:解:∵
2
x
+
1
y
=1

∴x+2y=(x+2y)•(
2
x
+
1
y
)=4+
4y
x
+
x
y
≥4+2
4y
x
×
x
y
=8,
當且僅當
4y
x
=
x
y
即x=2y=4時等號成立,
∴x+2y的最小值為8.
故選A.
點評:本題主要考查了基本不等式在最值問題中的應(yīng)用.基本不等式一定要把握好“一正,二定,三相等”的原則.屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x,y滿足(1+x)(1+2y)=2,則4xy+
1xy
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x,y滿足
x-y+2≥0
4x-y-1≤0
則z=4x•2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知正數(shù)x、y滿足2x+y=1,求
1
x
+
1
y
的最小值及對應(yīng)的x、y值.
(2)已知x>-2,求函數(shù)y=x+
16
x+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)x,y滿足x+2y=3,當xy取得最大值時,過點P(x,y)引圓(x-
1
2
)2+(y+
1
4
)2=
1
2
的切線,則此切線段的長度為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知正數(shù)x、y滿足2x+y=1,求
1
x
+
1
y
的最小值及對應(yīng)的x、y值.
(2)已知x、y為正實數(shù),且2x+y+6=xy,求x+y的最小值.

查看答案和解析>>

同步練習冊答案