假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.
證明:設(shè)⊙O1及⊙O2為互相外切的兩個(gè)圓,其一外公切線為A1A2,
切點(diǎn)為A1及A2令點(diǎn)O為連心線O1O2的中點(diǎn),過O作OA⊥A1A2,
由直角梯形的中位線性質(zhì)得:OA=
1
2
(O1A1+O2A2)=
1
2
O1O2
∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,
同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD內(nèi),兩個(gè)圓M、N分別與矩形兩邊相切,且兩圓互相外切.若矩形的長(zhǎng)和寬分別為9和8,試把兩個(gè)圓的面積之和S表示為圓M半徑x的函數(shù)關(guān)系式,并求S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1954年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(解析版) 題型:解答題

假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案