已知平面向量
a
=(λ,-3)與
b
=(3,-2)垂直,則λ的值是( 。
分析:由向量垂直和數(shù)量積的關(guān)系可得
a
b
=3λ+6=0,解方程可得答案.
解答:解:∵向量
a
=(λ,-3)與
b
=(3,-2)垂直,
a
b
=3λ+6=0,解得λ=-2
故選A
點評:本題考查數(shù)量積判斷兩個向量的垂直關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,cosθ)
,
b
=(sinθ,-2)
,且
a
b
,則tan(π+θ)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
的夾角為60°,且滿足(
a
-
b
a
=0,若|
a
|
=1,則|
b
|
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(3,-1)
,
b
=(x,-3)
,且
a
b
,則x=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(-1,2),
b
=(2,y),且
a
b
,則3
a
+2
b
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)若存在實數(shù)k和t,滿足
x
=(t-2)
a
+(t2-t-5)
b
,
y
=-k
a
+4
b
,且
x
y
,求出k關(guān)于t的關(guān)系式k=f(t);
(2)根據(jù)(1)的結(jié)論,試求出函數(shù)k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案