設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸,若把長(zhǎng)軸2010等分,過(guò)每個(gè)分點(diǎn)作AB的垂線,交橢圓的上半部分于P1,P2,…,P2009,F(xiàn)1為橢圓的左焦點(diǎn),則|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值是( 。
A、2008a
B、2009a
C、2010a
D、2011a
分析:先根據(jù)橢圓的定義可知|F1Pi|+|F2Pi|=2a,進(jìn)而可求得|F1P1|+|F2P1|+|F1P2|+|F2P2|+…+|F1P2009|+|F2P2009|的值,進(jìn)而根據(jù)點(diǎn)P1,P2,…,P2009關(guān)于y軸成對(duì)稱分布,可知|F1P1|+|F1P2|+…+|F1P2009|=
1
2
(|F1P1|+|F2P1|+|F1P2|+|F2P2|+…+|F1P2009|+|F2P2009|),最后根據(jù)|F1A|+|F2B|=2a求得結(jié)果.
解答:解:由橢圓的定義可知|F1Pi|+|F2Pi|=2a(i=1,2…,2009)
∴|F1P1|+|F2P1|+|F1P2|+|F2P2|+…+|F1P2009|+|F2P2009|=2a×2009=4018a
由題意知點(diǎn)P1,P2,…,P2009關(guān)于y軸成對(duì)稱分布,
∴|F1P1|+|F1P2|+…+|F1P2009|=
1
2
(|F1P1|+|F2P1|+|F1P2|+|F2P2|+…+|F1P2009|+|F2P2009|)=2009a,
又∵|F1A|+|F2B|=2a
故所求的值為2011a.
故選D
點(diǎn)評(píng):本題主要考查了橢圓的定義.考查了學(xué)生對(duì)橢圓第一定義的理解和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
的不垂直于對(duì)稱軸的弦,M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),則kAB•kOM=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸,若把AB100等分,過(guò)每個(gè)分點(diǎn)作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點(diǎn),則|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是(  )
A、98aB、99a
C、100aD、101a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為A1、A2,直線A1A2恰好經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x軸的一條弦,AB所在直線的方程為x=m(|m|<a且m≠0),P是橢圓上異于A、B的任意一點(diǎn),直線AP、BP分別交定直線l:x=
a2
m
于兩點(diǎn)Q、R,求證
OQ
OR
>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽模擬 題型:單選題

設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸,若把長(zhǎng)軸2010等分,過(guò)每個(gè)分點(diǎn)作AB的垂線,交橢圓的上半部分于P1,P2,…,P2009,F(xiàn)1為橢圓的左焦點(diǎn),則|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值是( 。
A.2008aB.2009aC.2010aD.2011a

查看答案和解析>>

同步練習(xí)冊(cè)答案