8.已知函數(shù)f(x)=x3-ax2+x.
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若f(x)在區(qū)間[1,2]為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

分析 (1)欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=2處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決;
(2)函數(shù)f(x)在[1,2]上單調(diào)遞增,f'(x)=3x2-2ax+1≥0在[1,2]上恒成立,可得2a≤3x+$\frac{1}{x}$在[1,2]上恒成立,求出右邊的最小值,即可得出結(jié)論.

解答 解:(1)當a=1時,f(x)=x3-x2+x,
∴f′(x)=3x2-2x+1,
∴f′(2)=3×22-2×2+1=9,
∵f(2)=8-4+2=6,
∴曲線y=f(x)在點(2,f(2))處的切線方程y-6=9(x-2),即9x-y-12=0;
(2)∵函數(shù)f(x)在[1,2]上單調(diào)遞增,
∴f'(x)=3x2-2ax+1≥0在[1,2]上恒成立,
∴2a≤3x+$\frac{1}{x}$在[1,2]上恒成立
令g(x)=3x+$\frac{1}{x}$,則g'(x)=$\frac{3{x}^{2}-1}{{x}^{2}}$>0,
∴g(x)=3x+$\frac{1}{x}$在1,2]上單調(diào)遞增,
∴g(x)≥g(1)=4
∴2a≤4,
∴a≤2.

點評 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、恒成立問題的轉(zhuǎn)換等基礎(chǔ)知識,考查運算求解能力.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.一個多面體的三視圖(單位:cm)如圖所示,其中正視圖是正方形,側(cè)視圖是等腰三角形,則該幾何體的表面積為88cm2;體積為48cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某物體三視圖如下,則該物是(  )
A.中空的長方體,體積為72cm3B.中空的長方體,體積為66cm3
C.實心長方體,體積為72cm3D.實心圓柱體,體積為66cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,過圓x2+y2=$\frac{12}{7}$上一點($\frac{6}{7}$,$\frac{4\sqrt{3}}{7}$)作圓的切線,切線l恰好經(jīng)過橢圓的右頂點和上頂點,A為橢圓上異于長軸頂點的任意一點.
(1)求橢圓C的標準方程;
(2)已知點P(4,0),直線AP與橢圓的另一個交點為B,直線BF與橢圓的另一個交點為C,設(shè)直線AP的斜率為k1,直線BF的斜率為k2,求$\overrightarrow{PA}$•$\overrightarrow{FC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.運行A=5,B=8,X=A,A=B,B=X+A程序后輸出A,B的結(jié)果是( 。
A.5,8B.8,5C.8,13D.5,13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.對于函數(shù)f(x)=x3-3x2,給出命題:
①f(x)是增函數(shù),無極值;
②f(x)是減函數(shù),無極值;
③f(x)的遞增區(qū)間為(-∞,0),(2,+∞),遞減區(qū)間為(0,2);
④f(0)=0是極大值,f(2)=-4是極小值.
其中正確的命題有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b(a,b≠0),不得分的概率為$\frac{a+b}{2}$.若他投籃一次得分ξ的數(shù)學(xué)期望$Eξ>\frac{7}{4}$,則a的取值范圍是($\frac{5}{12}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列,a,b,c分別是其所對的邊,若a=1,b=$\sqrt{3}$,則角A的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求f(x)=$\frac{1}{2}$x2-lnx的單調(diào)增區(qū)間是[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案