解答:解:(Ⅰ)對于f
1(x)=xsinx,
∵sinx∈[-1,1],則|sinx|≤1,
∴|x||sinx|≤|x|,即|xsinx|≤|x|,
∴|f
1(x)|≤|x|對一切實(shí)數(shù)均成立,
故函數(shù)f
1(x)=xsinx是Ω函數(shù);
對于f
2(x)=
,當(dāng)x=0時(shí),f
2(x)=
=
,此時(shí)|f
3(0)|>|0|,
∴|f(x)|≤|x|對一切實(shí)數(shù)x不均成立,
故函數(shù)f
2(x)=
不是Ω函數(shù);
對于f
3(x)=
,|f
3(x)|≤|x|對一切實(shí)數(shù)x均成立,即|
|≤1對一切實(shí)數(shù)x均成立,
當(dāng)x=0時(shí),不等式恒成立,
當(dāng)x≠0時(shí),y=
=
,
∵x+
≤-2或x+
≥2,
∴-
≤
<0或0<
≤,
∴|
|≤
≤1,
∴|f
3(x)|≤|x|對一切實(shí)數(shù)x均成立,
故函數(shù)f
3(x)=
是Ω函數(shù).
綜上,函數(shù)f
1(x)=xsinx,f
3(x)=
是Ω函數(shù).
(Ⅱ)∵函數(shù)y=f(x)是定義在R上的奇函數(shù),
∴f(0)=0,
∵對一切實(shí)數(shù)x
1、x
2,均有|f(x
1)-f(x
2)|≤|x
1-x
2|,
∴令x
1=x,x
2=0得|f(x)-f(0)|≤|x-0|,
即|f(x)|≤|x|對一切實(shí)數(shù)x均成立,
∴函數(shù)f(x)一定是Ω函數(shù);
(Ⅲ)證明:由題意可知f(x)的定義域?yàn)镽,
∵f(x)=ln(x
2+a)-lna=ln(
+1),a>0,
∴
+1>1,f(x)>0,則|f(x)|=f(x),
令g(x)=|f(x)|-|x|=f(x)-|x|
∴當(dāng)x≥0時(shí),g(x)=f(x)-x,g′(x)=f′(x)-1=
-1=
<0.
∴g(x)在[0,+∞)上為減函數(shù);
當(dāng)x<0時(shí),g(x)=f(x)+x,g′(x)=f′(x)+1=
+1=
>0,
∴g(x)在(-∞,0)為增函數(shù),
∴g(x)在x=0處取得極大值,同時(shí)也為最大值,
∴g(x)≤g(0)=lna-lna=0,
即|f(x)|-|x|≤0在x∈R恒成立,即|f(x)|≤|x|在x∈R恒成立.
∴函數(shù)f(x)=ln(x
2+a)-lna是Ω函數(shù).