分析 (1)由中位線定理得AB∥EF,故而AB∥平面DEF;
(2)由直二面角可得BD⊥平面ACD,于是VE-AFD=VF-ADE=$\frac{1}{3}{S}_{△ADE}•\frac{1}{2}BD$;
(3)根據(jù)三棱錐的三個側(cè)面兩兩垂直的性質(zhì)可求得外接球的半徑,從而計算出球的表面積.
解答 解:(1)∵E、F分別是AC和BC邊的中點,
∴EF∥AB,又EF?平面DEF,AB?平面DEF,
∴AB∥平面DEF.
(2)∵CD是正三角形ABC的高,∴AD=BD=2,CD=2$\sqrt{3}$,
∵二面角A-DC-B是直二面角,
∴BD⊥平面ACD.
∵E,F(xiàn)是AC,BC的中點,
∴S△ADE=$\frac{1}{2}$S△ACD=$\frac{1}{2}×\frac{1}{2}×2×2\sqrt{3}$=$\sqrt{3}$,
F到平面ACD的距離等于$\frac{1}{2}BD$=1.
∴VE-AFD=VF-ADE=$\frac{1}{3}{S}_{△ADE}•\frac{1}{2}BD$=$\frac{1}{3}×\sqrt{3}×1$=$\frac{\sqrt{3}}{3}$.
(3)設(shè)外接球的球心為O,
∵△BCD是直角三角形,∴O在底面BCD上的投影為BC的中點F,連結(jié)OF,
則OF⊥平面BCD,又AD⊥平面BCD,
∴AD∥OF,
∵球O是三棱錐A-BCD的外接球,
∴OF=$\frac{1}{2}$AD=1.
∴球O的半徑OB=$\sqrt{B{F}^{2}+O{F}^{2}}$=$\sqrt{5}$.
∴球O的表面積S=4πOB2=20π.
點評 本題考查了線面平行的判定,棱錐的體積計算,棱錐與外接球的關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,4) | C. | (2,4) | D. | (4,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
X1 | 6 | 7 | 8 | 9 | 10 |
P | 0.16 | 0.14 | 0.42 | 0.1 | 0.18 |
X2 | 6 | 7 | 8 | 9 | 10 |
P | 0.19 | 0.24 | 0.12 | 0.28 | 0.17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com