9.P是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上一點(diǎn),M,N分別是圓x2+y2+10x+21=0和x2+y2-10x+24=0上的點(diǎn),則|PM|-|PN|的最大值為( 。
A.6B.7C.8D.9

分析 由題設(shè)通過(guò)雙曲線的定義推出|PF1|-|PF2|=6,利用|MP|≤|PF1|+|MF1|,|PN|≥|PF2|-|NF2|,推出|PM|-|PN|≤|PF1|+|MF1|-|PF2|-|NF2|,求出最大值.

解答 解:雙曲線雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$,如圖:
∵a=3,b=4,c=5,
∴F1(-5,0),F(xiàn)2(5,0),
∵x2+y2+10x+21=0,x2+y2-10x+24=0,
∴(x+5)2+y2=4和(x-5)2+y2=1,
∵|PF1|-|PF2|=2a=6,
∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|-|NF2|,
∴-|PN|≤-|PF2|+|NF2|,
所以,|PM|-|PN|≤|PF1|+|MF1|-|PF2|+|NF2|
=6+1+2
=9.
故選D

點(diǎn)評(píng) 本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.過(guò)拋物線y2=4x的頂點(diǎn)O作兩條互相垂直的弦OA、OB,求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.集合A={α|α=kπ+$\frac{π}{2}$,k∈Z}與集合B={α|α=2kπ±$\frac{π}{2}$,k∈Z}的關(guān)系是(  )
A.A=BB.A⊆BC.B⊆AD.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在等差數(shù)列{an}中,a1=2,公差為d,則“d=2”是“a1,a2,a4成等比數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.拋物線y2=2x與直線y=x-4圍成的平面圖形面積( 。
A.18B.16C.20D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知2a=5b=m且$\frac{1}{a}+\frac{1}$=2,則m的值是(  )
A.100B.10C.$\sqrt{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知{an}是等比數(shù)列,a2=2,a4=8,則a6=( 。
A.4B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\frac{π}{4}<α<\frac{3π}{4}$,$sin(α-\frac{π}{4})=\frac{4}{5}$,則cosα=( 。
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={1,2,3,4,5,6,7},B={x|0<x<5,x∈Z},全集U=R,求:
(1)A∩B;                 
(2)AUB.

查看答案和解析>>

同步練習(xí)冊(cè)答案